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where the Lagrangian density is defined as
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such that
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is obtained.

2 Verification
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Because ¢ = ¢, which is real (leading to Q_, = Q}),
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As required.



3 Verification

The normal coordinate ), and momentum P, are introduced by Fourier
expansion

Thus,

Because of the commutations between ¢, and p,, we can get the commutations
between ), and P; as the following:
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According to the eqution of motion in the Heisenberg picture, we can further
expand s an P, into
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Thus, we can rewrite the normal coordinate and the normal momentum as

follows
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Note that w(s) = w(—s) is an even function. Therefore,

Next step is to make use of the commutations previously derived:
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