Lorentz Symmetry, Weyl Spinors, Chirality and Dirac Equation

Kow Lung Chang

Physics Department, National Taiwan University

May 2, 2013

Kow Lung Chang Lorentz Symmetry, Weyl Spinors, Chirality and Dirac Equation

Contents

- Minkowski Space and Lorentz Transformation
- ♦ Generators of Lorentz Group
- Irreducible Representations of Lorentz Group and Weyl Spinors
- \blacklozenge SO(3,1) and SL(2,C)
- Chiral Transformation and Spinor Algebra
- ♦ Spinor space and Co-spinor space
- Dirac spinor and Dirac equation
- \blacklozenge Invariance of the γ matrices in all Lorentz frames
- Zero Mass Limit and Helicity of Weyl spinors

Minkowski Space and Lorentz Transformation

Difine the Minkowski contravariant 4-vector as:

$$x^{\mu} = (x^0 = ct, \vec{x}),$$
 (1)

and the Minkowski covariant 4-vector as:

$$x_{\mu} = (x^0 = -ct, \vec{x}),$$
 (2)

with the metric tensor

$$g_{\mu\nu} = 0$$
 if $\mu \neq \nu$; $-g_{00} = g_{11} = g_{22} = g_{33} = 1.$ (3)

A linear transformation on the x^{μ} given as follows

$$x^{\prime \mu} = \Lambda^{\mu}_{\nu} \tag{4}$$

is called Homogeneous Lorentz transformation (HLT), or simply LT if the following condition is met:

$$x^{\prime\mu}x^{\prime}_{\mu} = x^{\mu} \tag{5}$$

or in matrix notation as

$$\Lambda^T \mathbf{g} \Lambda = \mathbf{g} \quad \text{or} \quad \Lambda^T \mathbf{g} = \mathbf{g} \Lambda^{-1}.$$
 (6)

< ∃ >

Since there exists an identity Lorentz transformation, $\Lambda = I$, and an inverse Lorentz transformation, Λ^{-1} , namely both I and Λ^{-1} exist. Therefore LT forms a group SO(3,1) because:

$$(\boldsymbol{\Lambda}_1 \boldsymbol{\Lambda}_2)^T g(\boldsymbol{\Lambda}_1 \boldsymbol{\Lambda}_2) = \boldsymbol{\Lambda}_2^T \boldsymbol{\Lambda}_1^T g \boldsymbol{\Lambda}_1 \boldsymbol{\Lambda}_2 = g. \tag{7}$$

The condition det $\Lambda = 1$ is automatically satisfied. We shall only consider the proper LT in which $\Lambda_0^0 \ge 1$ in this lecture. Since the condition $\Lambda^t g \Lambda = g$ provide 10 constraints among 16 matrix elements of λ , the remaining 6 independent coefficients serve as the 6 group parameters, specified as $\Lambda = \Lambda(\vec{\theta}, \vec{\xi})$ and

$$\vec{\theta} = (\theta^1, \theta^2, \theta^3) = \text{ rotation},$$

$$\vec{\xi} = (\xi^1, \xi^2, \xi^3) = \text{ Lorentz boost.}$$
(8a)

Image: A Image: A

Generators of Lorentz Group

The generators of the group are given:

$$A_{i} = \frac{\partial}{\partial \theta^{i}} \Lambda(\vec{\theta}, \vec{\xi}), \quad B_{i} = \frac{\partial}{\partial \xi^{i}} \Lambda(\vec{\theta}, \vec{\xi}), \quad (8a,b)$$

For the Lorentz boost along 1-axis with angle ξ ,

$$\mathbf{\Lambda} = \begin{pmatrix} \cosh \xi & -\sinh \xi & 0 & 0 \\ -\sinh \xi & \cosh \xi & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$
(9)

where $\xi = \tanh^{-1}\beta$ and

similarly,

$$B_2 = \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad B_3 = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}.$$
(10b,c)

・ロン ・部 と ・ ヨ と ・ ヨ と …

æ .

And for the generators if rotation, we have

and

and
$$A_2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$
, $A_3 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.
(11b,c)

御 と く ヨ と く ヨ と

э

SO(3,1) Lie algebra as:

$$[A_i, A_j] = -\epsilon_{ij}^k A_k, \quad [A_i, B_j] = -\epsilon_{ij}^k B_k, \qquad (12)$$

Canonical formulation of algebra:

$$M^{\mu\nu} = x^{\mu} \frac{\partial}{\partial x_{\nu}} - x^{\nu} \frac{\partial}{\partial x_{\mu}}, \qquad (13a)$$

$$[M^{\mu\nu}, M^{\alpha\beta}] = -g^{\nu\beta}M^{\mu\alpha} - g^{\mu\alpha}M^{\nu\beta} + g^{\nu\alpha}M^{\mu\beta} + g^{\mu\beta}M^{\nu\alpha}.$$
(13b)

→ 3 → 4 3

If we denote

$$L_i = \frac{1}{2} \left(\frac{A_i}{i} + B_i \right)$$
, and $R_i = \frac{1}{2} \left(\frac{A_i}{i} - B_i \right)$. (14a,b)

The algebra takes as

$$[L_i, L_j] = i\epsilon_{ij}^k L_k, \qquad (15a)$$

$$[L_i, R_i] = 0, \qquad (15b)$$

$$[R_i, R_j] = i\epsilon_{ij}^k R_k. \qquad (15c)$$

<> E ► < E</p>

э

Irreducible Representations of Lorentz Group and Weyl Spinors Consider the finite dimensional representations, denoted by (*I*, *r*) with the basis

$$|I, m\rangle \otimes |r, n\rangle \equiv |I, m; r, n\rangle$$
 (16)

where

$$-l \leqslant m \leqslant l, \quad -r \leqslant n \leqslant r, \quad \text{and} \quad l, r = \text{ half integers.}$$
(17)

The simpliest representation of the generators, an one dimensional (0, 0)-representation read as

$$\langle 0, 0; 0, 0 | L_i | 0, 0; 0, 0 \rangle = \langle 0, 0; 0, 0 | R_i | 0, 0; 0, 0 \rangle = 0,$$
 (18)

 $(\frac{1}{2}, 0)$ -representation: left-handed-spinor

$$\frac{1}{2}, m; 0, 0\rangle \tag{19}$$

 $(0, \frac{1}{2})$ -representation: right-handed-spinor

$$|0,0;\frac{1}{2},n\rangle \tag{20}$$

then we have

$$L_{i}^{(\frac{1}{2},0)} = \frac{1}{2}\boldsymbol{\sigma}_{i}, \qquad R_{i}^{(\frac{1}{2},0)} = 0, \qquad (0.21a)$$
$$L_{i}^{(0,\frac{1}{2})} = 0, \qquad R_{i}^{(0,\frac{1}{2})} = \frac{1}{2}\boldsymbol{\sigma}_{i}, \qquad (0.21b)$$

which lead to

$$A_{i}^{(\frac{1}{2},0)} = \frac{i}{2} \sigma_{i}, \qquad B_{i}^{(\frac{1}{2},0)} = \frac{1}{2} \sigma_{i}, \qquad (0.22a)$$
$$A_{i}^{(0,\frac{1}{2})} = \frac{i}{2} \sigma_{i}, \qquad B_{i}^{(0,\frac{1}{2})} = -\frac{1}{2} \sigma_{i}, \qquad (0.22b)$$

and the 2-dimensional irreducible representation of Lorentz group as

$$D^{(\frac{1}{2},0)}(\vec{\theta},\vec{\xi}) = \exp\left(\frac{i}{2}\vec{\sigma}\cdot(\vec{\theta}-i\vec{\xi})\right), \qquad (23a)$$
$$D^{(0,\frac{1}{2})}(\vec{\theta},\vec{\xi}) = \exp\left(\frac{i}{2}\vec{\sigma}\cdot(\vec{\theta}+i\vec{\xi})\right). \qquad (23b)$$

直 と く ヨ と く ヨ と

э

As a quick check that

$$D^{(\frac{1}{2},0)\dagger}(\vec{\theta},\vec{\xi}) = \exp\left(-\frac{i}{2}\vec{\sigma}\cdot(\vec{\theta}+i\vec{\xi})\right) \neq D^{(\frac{1}{2},0)}(\vec{\theta},\vec{\xi})^{-1},$$

$$D^{(0,\frac{1}{2})\dagger}(\vec{\theta},\vec{\xi}) = \exp\left(-\frac{i}{2}\vec{\sigma}\cdot(\vec{\theta}-i\vec{\xi})\right) \neq D^{(0,\frac{1}{2})}(\vec{\theta},\vec{\xi})^{-1},$$

Let us perform the identifications

$$|\frac{1}{2},\frac{1}{2}\rangle_I\longmapsto \begin{pmatrix}1\\0\end{pmatrix}=e_1, \quad |\frac{1}{2},-\frac{1}{2}\rangle_I\longmapsto \begin{pmatrix}0\\1\end{pmatrix}=e_2, \ (25a,b)$$

→ 3 → < 3</p>

then

$$\psi_l(x) = \psi_l^a(x) e_a = \begin{pmatrix} \psi_l^1(x) \\ \psi_l^2(x) \end{pmatrix}, \qquad (26)$$

the Lorentz Transformation as

$$\psi_l(x) \longmapsto \psi'_l(x') = D^{(\frac{1}{2},0)}(\vec{\theta},\vec{\xi})\psi_l(\Lambda^{-1}x'),$$
 (27)
Similarly if

$$\psi_r(x) = \psi_r^a(x) f_a = \psi_r^1(x) \begin{pmatrix} 1\\ 0 \end{pmatrix} + \psi_r^2(x) \begin{pmatrix} 0\\ 1 \end{pmatrix} = \begin{pmatrix} \psi_r^1(x)\\ \psi_r^2(x) \end{pmatrix},$$
(28)

the transformation reads as

$$\psi_r(x) \longmapsto \psi'_r(x') = D^{(0,\frac{1}{2})}(\vec{\theta}, \vec{\xi}) \psi_r(\Lambda^{-1}x')). \tag{29}$$

SO(3,1) and SL(2,C) SL(2,C) transformation in C^2 -space:

$$\xi' = \begin{pmatrix} \xi'^1 \\ \xi'^2 \end{pmatrix} = \mathbf{L} \begin{pmatrix} \xi^1 \\ \xi^2 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \xi^1 \\ \xi^2 \end{pmatrix}.$$
(30)

where

det
$$\mathbf{L} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ab - bc = 1,$$
 (31)

If we exponentiate L by a 2×2 matrix **A**, i.e.

$$\mathbf{L} = e^{\mathbf{A}},\tag{32}$$

向 ト イヨ ト イヨ ト

Then we have the following proposition

If a matrix **L** can be expressed as $\mathbf{L} = e^{\mathbf{A}}$, then

$$\det \mathbf{L} = e^{\mathsf{Tr} \mathbf{A}}.$$
 (33)

Hence we ensure that

$$\det D^{(\frac{1}{2},0)}(\vec{\theta},\vec{\xi}) = \det e^{\frac{i}{2}\vec{\sigma}\cdot(\vec{\theta}-i\vec{\xi})} = e^{\mathsf{Tr} \frac{i}{2}\vec{\sigma}\cdot(\vec{\theta}-i\vec{\xi})} = 1, \quad (34)$$

and

$$\det D^{(0,\frac{1}{2})}(\vec{\theta},\vec{\xi}) = \det e^{\frac{i}{2}\vec{\sigma}\cdot(\vec{\theta}+i\vec{\xi})} = e^{\operatorname{Tr}\frac{i}{2}\vec{\sigma}\cdot(\vec{\theta}+i\vec{\xi})} = 1.$$
(35)

The isomorphism of SL(2,C) onto SO(3,1) in Lorentz transformation can be demonstrated as follows: let

$$\mathbf{X} = x^{\mu} \boldsymbol{\sigma}_{\mu} = \begin{pmatrix} -x^{0} + x^{3} & x^{1} - ix^{2} \\ x^{1} + ix^{2} & -x^{0} - x^{3} \end{pmatrix}, \quad (36)$$

and

det
$$\mathbf{X} = (x^0)^2 - \vec{x}^2$$
. (37)

which leads to the Lorentz Transformation on X as

$$\mathbf{X}' = D^{(\frac{1}{2},0)}(\vec{\theta},\vec{\xi})\mathbf{X}D^{(\frac{1}{2},0)\dagger}(\vec{\theta},\vec{\xi}),$$
(38)

直 マ イヨ マ イヨマ

because of the invariance of the length of the space-time vector,

$$\det \mathbf{X}' = \det \mathbf{X}. \tag{39}$$

As an example when \mathcal{O}' -frame is boost along the 3rd axis, i.e.

$$\mathbf{X}' = e^{\frac{1}{2}\sigma_3\xi} \mathbf{X} e^{\frac{1}{2}\sigma_3\xi} = \begin{pmatrix} e^{\frac{1}{2}\xi} & 0\\ 0 & e^{-\frac{1}{2}\xi} \end{pmatrix} \mathbf{X} \begin{pmatrix} e^{\frac{1}{2}\xi} & 0\\ 0 & e^{-\frac{1}{2}\xi} \end{pmatrix}.$$
(40)

we regain the LT as follows

$$x'^{0} = \cosh \xi x^{0} - \sinh \xi x^{3},$$
 (41a)
 $x'^{1} = x^{1},$ (41b)

$$x'^2 = x^2$$
, (41c)

$$x'^{3} = -\sinh\xi x^{0} + \cosh\xi x^{3}.$$
 (41d)

Kow Lung Chang Lorentz Symmetry, Weyl Spinors, Chirality and Dirac Equation

Chiral Transformation

 \mathcal{K} = chiral operator, which is a discrete transformation between left handed irreducible representations and the right handed irreducible representations It is an antilinear operator, i.e.

$$\mathcal{K}(a\psi + b\varphi) = a^* \mathcal{K}\psi + b^* \mathcal{K}\varphi, \qquad (42)$$

as well as an antiunitary operator:

$$(\mathcal{K}\psi,\mathcal{K}\varphi)=(\varphi,\psi)=(\psi,\varphi)^*.$$
(43)

It is nothing to with the space-time coordinates, hence

$$\mathcal{K}A_i\mathcal{K}^{-1} = A_i, \quad \mathcal{K}B_i\mathcal{K}^{-1} = B_i.$$
 (44)

but the operators L_i and R_i transform as follows

$$\mathcal{K}L_i\mathcal{K}^{-1} = \frac{1}{2}\mathcal{K}\left(\frac{A_i}{i} + B_i\right)\mathcal{K}^{-1} = -R_i, \quad \mathcal{K}R_i\mathcal{K}^{-1} = -L_i,$$
(45a,b)

therefore we reach the following proposition if the basis of $(\frac{1}{2}, 0)$ - and $(0, \frac{1}{2})$ -representation are abbreviated by

$$|j, m; 0, 0\rangle = L_{jm},$$
 (46a)
 $|0, 0, k, n\rangle = R_{kn},$ (46b)

then

Proposition 2.

The vector $\mathcal{K}L_{jm}$ is the eigenvector of R^2 and R_3 with the eigenvalues j(j+1) and -m respectively. While the vector $\mathcal{K}R_{kn}$ is the eigenvector of L^2 and L_3 with the eigenvalues k(k+1) and -n respectively.

Since ${}^2 = R^2 \mathcal{K}$, $\mathcal{K} \vec{L} = -\vec{R} \mathcal{K}$

then we have

$$R^{2}\mathcal{K}L_{jm} = \mathcal{K}L^{2}L_{jm} = j(j+1)\mathcal{K}L_{jm},$$

$$R_{3}\mathcal{K}L_{jm} = -\mathcal{K}L_{3}L_{jm} = -m\mathcal{K}L_{jm},$$

Therefore

$$\mathcal{K}L_{jm} = \gamma(m)R_{j-m}$$

Similarly

$$\mathcal{K}R_{kn} = \delta n L_{k-n}.$$

Hence we have

$$(\mathcal{K}L_{jm}, \mathcal{K}L_{jm'}) = \gamma^*(m)\gamma(m')(R_{j,-m}, R_{j,-m'}) = (L_{jm'}, L_{jm}),$$
(47)

or
$$\gamma^*(m)\gamma(m')\delta_{-m,-m'} = \delta_{m'm}$$

< ∃ →

э

Take spinor for instance, we obtain that

$$\mathcal{K}L_{\frac{1}{2}m} = \gamma(n)\mathcal{K}R_{\frac{1}{2}-m}, \qquad \mathcal{K}R_{\frac{1}{2}n} = \delta(n)\mathcal{K}L_{\frac{1}{2}-n}, \quad (48ab)$$

or

$$\mathcal{K}\begin{pmatrix}1\\0\end{pmatrix}_{I} = \gamma(\frac{1}{2})\begin{pmatrix}0\\-1\end{pmatrix}_{r} \qquad \mathcal{K}\begin{pmatrix}0\\1\end{pmatrix}_{I} = \gamma(-\frac{1}{2})\begin{pmatrix}-1\\0\end{pmatrix}_{r},$$
(49a,b)

$$\mathcal{K}\begin{pmatrix}1\\0\end{pmatrix}_{r} = \delta(\frac{1}{2})\begin{pmatrix}0\\-1\end{pmatrix}_{l} \qquad \mathcal{K}\begin{pmatrix}0\\1\end{pmatrix}_{r} = \delta(-\frac{1}{2})\begin{pmatrix}-1\\0\end{pmatrix}_{l}, \quad (49c,d)$$

Kow Lung Chang Lorentz Symmetry, Weyl Spinors, Chirality and Dirac Equation

< E ► < E

Let us evaluate the following matrix elements

$$D_{mm'}^{(\frac{1}{2},0)} = (L_{\frac{1}{2},m}, e^{\vec{\theta}\cdot\vec{A}+\vec{\zeta}\cdot\vec{B}}L_{\frac{1}{2},m'}) = (\mathcal{K}e^{\vec{\theta}\cdot\vec{A}+\vec{\zeta}\cdot\vec{B}}L_{\frac{1}{2},m'}, \mathcal{K}L_{\frac{1}{2},m})$$
$$= \gamma^{*}(m')\gamma(m)(e^{\vec{\theta}\cdot\vec{A}+\vec{\zeta}\cdot\vec{B}}R_{\frac{1}{2},-m'}, R_{\frac{1}{2},-m})$$
$$= \gamma(m)D_{-m,-m'}^{(0,\frac{1}{2})*}\gamma^{*}(m'),$$
(50)

or

$$D^{(\frac{1}{2},0)} = \begin{pmatrix} 0 & \gamma(\frac{1}{2}) \\ \gamma(-\frac{1}{2}) & 0 \end{pmatrix} D^{(0,\frac{1}{2})*} \begin{pmatrix} 0 & \gamma^{*}(-\frac{1}{2}) \\ \gamma^{*}(\frac{1}{2}) & 0 \end{pmatrix}.$$
(51)

白 ト ・ ヨ ト ・ ヨ ト

э

Similarly,

$$D^{(0,\frac{1}{2})} = \begin{pmatrix} 0 & \delta(\frac{1}{2}) \\ \delta(-\frac{1}{2}) & 0 \end{pmatrix} D^{(\frac{1}{2},0)*} \begin{pmatrix} 0 & \delta^{*}(-\frac{1}{2}) \\ \delta^{*}(\frac{1}{2}) & 0 \end{pmatrix}.$$
 (52)

In order to be consistent with the LT for spinors, one chooses

$$\gamma(\frac{1}{2}) = \delta(\frac{1}{2}) = -\gamma(-\frac{1}{2}) = -\delta(-\frac{1}{2}) = 1$$
 (53)

hence we have

$$\epsilon = \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix} \tag{54}$$

and

$$\epsilon \boldsymbol{\sigma}_{i}^{*} \epsilon^{-1} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \boldsymbol{\sigma}_{i}^{*} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = -\boldsymbol{\sigma}_{i}.$$
 (55)

w Lung Chang Lorentz Symmetry, Weyl Spinors, Chirality and Dirac Equation

Spinor space and Co-spinor space

Let
$$\begin{cases} \mathcal{V}_{(\frac{1}{2},0)} : \text{ left-hand spinor space} \\ e_{a} : (a = 1, 2) \text{ two left-handed spinor} \end{cases}$$
(56)
A spinor in $\mathcal{V}_{(\frac{1}{2},0)}$
$$\begin{cases} \mathcal{V}_{(\frac{1}{2},0)} : \text{ co-left-hand spinor space} \\ e_{a} : (a = 1, 2) \text{ two co-left-handed spinor} \end{cases}$$
(57)

which is related to the left-handed spinor by

$$\dot{\psi} = \psi^{T} \epsilon^{T} = (\dot{\psi}_{1}, \dot{\psi}_{1}) = (\psi^{1}, \psi^{2}) \epsilon^{T} = (\psi^{1}, \psi^{2}) \epsilon^{-1}.$$
 (58)

and the corresponding LT is given as

$$\dot{\psi} \xrightarrow{L.T.} \dot{\psi}' = \psi'^{T} \epsilon^{-1} = \psi^{T} D^{T(\frac{1}{2},0)} \epsilon^{-1}$$

$$i \left(\cdot D^{(\frac{1}{2},0)*, -1} \right)^{\dagger} = i D^{(0,\frac{1}{2})\dagger}$$
(59)

$$=\psi(\epsilon D^{(\frac{1}{2},0)*}\epsilon^{-1})^{*}=\psi D^{(0,\frac{1}{2})^{*}}.$$
 (60)

Similarly the LT for the co-right-handed spinor is given as

$$\dot{\varphi} \stackrel{L.T.}{\longmapsto} \dot{\varphi}' = {\varphi'}^T \epsilon^T = \dot{\varphi} D^{(\frac{1}{2},0)\dagger}.$$
(61)

Let us construct the 4-dimensional product space as

$$\mathcal{V}_{(\frac{1}{2},\frac{1}{2})}: e_a \dot{f}^b \text{ as basis}$$
 (62a)

$$\mathcal{V}_{(\frac{1}{2},\frac{1}{2})}: \dot{e}_a f^b \text{ as basis}$$
 (62b)

Kow Lung Chang Lorentz Symmetry, Weyl Spinors, Chirality and Dirac Equation

then any element in $\mathcal{V}_{(\frac{1}{2},\frac{1}{2})}$ and in $\mathcal{V}_{(\frac{1}{2},\frac{1}{2})}$ can be written respectively as

$$U^{(\frac{1}{2},\frac{1}{2})} = \begin{pmatrix} u_1^1 & u_2^1 \\ u_2^2 & u_2^2 \end{pmatrix}.$$
 (63)

and

$$U^{(\frac{1}{2},\frac{1}{2})} = \begin{pmatrix} u_1^{1} & u_1^{2} \\ u_2^{1} & u_2^{2} \end{pmatrix}.$$
 (64)

It is obvious that the space-time matrix

$$\mathbf{X} = x^{\mu} \boldsymbol{\sigma}_{\mu} = \begin{pmatrix} -x^{0} + x^{3} & x^{1} - ix^{2} \\ x^{1} + ix^{2} & -x^{0} - x^{3} \end{pmatrix}, \quad (65)$$

transforms as an element of $\mathcal{V}_{(\frac{1}{2},\frac{1}{2})}\text{-}\mathsf{representation},$ while

We are now in the position to emphasize the next proposition

Proposition 3.

An operator of the $(\frac{1}{2}, \frac{1}{2})$ -representation acts upon a vector of the $(0, \frac{1}{2})$ -representation yields a vector of $(\frac{1}{2}, 0)$ -representation. Conversely an operator of the $(\frac{1}{2}, \frac{1}{2})$ -representation acts upon a vector of the $(\frac{1}{2}, 0)$ -representation will yield a vector of the $(0, \frac{1}{2})$ representation.

The proof goes as; If
$$\mathbf{A} \in (\frac{1}{2}, \frac{1}{2})$$
-representation,
 $\xi \in (0, \frac{1}{2})$ -representation, then
 $\eta \xrightarrow{L.T.} \eta' = \mathbf{A}' \xi' = D^{(\frac{1}{2},0)} \mathbf{A} D^{(\frac{1}{2},0)\dagger} D^{(0,\frac{1}{2})} \xi = D^{(\frac{1}{2},0)} \eta$, (67)

Hence we have a left-handed spinor, i.e.

$$\eta = \mathbf{A}\xi, \tag{68}$$

Similarly that

$$\text{if } \left\{ \begin{array}{ll} \mathbf{A} & \in (\frac{1}{2}, \frac{1}{2}) - \text{representation,} \\ \\ \eta & \in (\frac{1}{2}, \mathbf{0}) - \text{representation.} \end{array} \right.$$

Therefore we reach as follows,

$$\xi \xrightarrow{L.T.} \xi' = \mathbf{A}'_{c} \eta' = D^{(0,\frac{1}{2})} \mathbf{A}_{c} D^{(0,\frac{1}{2})\dagger} D^{(\frac{1}{2},0)} \xi = D^{(0,\frac{1}{2})} \xi,$$
(69)

< ∃ →

-

Dirac spinor and Dirac equation

Since any Lorentz 4-vector with the construction

$$U = \sigma_{\mu} u^{\mu}, \qquad U_c = \sigma_{\mu}^c u^{\mu}, \tag{70}$$

transforms as $(\frac{1}{2}, \frac{i}{2})$ -representation and $(\frac{i}{2}, \frac{1}{2})$ -representation respectively. Therefore,

$$\mathbf{P}_{c}\psi_{l} = m_{0}c\psi_{r},$$
 (0.71a)
 $\mathbf{P}\psi_{r} = m_{0}c\psi_{l},$ (0.71b)

hence we have

$$\begin{pmatrix} 0 & \mathbf{P}_c \\ \mathbf{P} & 0 \end{pmatrix} \begin{pmatrix} \psi_r \\ \psi_l \end{pmatrix} = m_0 c \begin{pmatrix} \psi_r \\ \psi_l \end{pmatrix}, \qquad (72)$$

Kow Lung Chang Lorentz Symmetry, Weyl Spinors, Chirality and Dirac Equation

If we define the Dirac spinor ψ_d as $\psi_r \oplus \psi_l$, then

$$\begin{pmatrix} 0 & \mathbf{P}_c \\ \mathbf{P} & 0 \end{pmatrix} \psi_d(x) = m_0 c \psi_d(x), \tag{73}$$

or

$$\begin{bmatrix} \begin{pmatrix} 0 & i\sigma_c^{\mu} \\ i\sigma^{\mu} & 0 \end{bmatrix} \partial_{\mu} + \frac{m_0 c}{\hbar} \end{bmatrix} \psi_d(x) = 0, \quad (74)$$

which can be cast into

$$\left(i\gamma^{\mu}\partial_{\mu}+\frac{m_{0}c}{\hbar}\right)\psi_{d}(x)=0,$$
(75)

白 ト ・ ヨ ト ・ ヨ ト

with γ^{μ} defined as

$$\gamma^{\mu} = \begin{pmatrix} 0 & \sigma^{\mu}_{c} \\ \sigma^{\mu} & 0 \end{pmatrix} \quad \text{or} \quad \gamma^{0} = \begin{pmatrix} 0 & \mathbf{I} \\ \mathbf{I} & 0 \end{pmatrix}, \quad \gamma^{i} = \begin{pmatrix} 0 & -\sigma^{i} \\ \sigma^{i} & 0 \end{pmatrix}.$$
(76)

The covariant formulation of Dirac equation does not imply that

$$\gamma_\mu\partial^\mu=\gamma'_\mu\partial'^\mu$$

In fact that we have the following proposition.

→ 3 → 4 3

Proposition 4.

The gamma matrices γ^{μ} are universal in all Lorentz frame, namely the Dirac equation in another Lorentz frame, i.e. the \mathcal{O}' -system always takes the same gamma matrices γ^{μ} used in \mathcal{O} -system. The equation in \mathcal{O}' -system is expressed as

$$\left(i\gamma^{\mu}\partial'_{\mu}+\frac{m_{0}c}{\hbar}\right)\psi'_{d}(x')=0.$$

< ∃ >

It can be proved by defining

$$D(\vec{\theta},\vec{\xi}) = D^{(0,\frac{1}{2})}(\vec{\theta},\vec{\xi}) \oplus D^{(\frac{1}{2},0)}(\vec{\theta},\vec{\xi})$$

and multiplying it upon the Dirac equation as follows

$$\left(iD\gamma^{\mu}D^{-1}\partial_{\mu}+\frac{m_{0}c}{\hbar}\right)D\psi_{d}(x)=0.$$
(77)

One can show that

$$D\gamma^{\mu}D^{-1} = \Lambda^{\mu}_{\nu}\gamma^{\nu}, \qquad (78)$$

and the Dirac equation in the new Lorentz frame, i.e. $\mathcal{O}^\prime \text{frame}$ reads as

$$\left(i\gamma^{\mu}\partial'_{\mu} + \frac{m_{0}c}{\hbar}\right)\psi'_{d}(x') = 0, \qquad (79)$$

by identifying $\psi'_d(x') \equiv D(\vec{\theta}, \vec{\xi})\psi_d(x) = D(\vec{\theta}, \vec{\xi})\psi_d(\Lambda^{-1}x')$.

Zero Mass Limit and Helicity of Weyl spinors

Last demonstration for zero mass limit in Dirac equation

$$\begin{pmatrix} 0 & \mathbf{P}_c \\ \mathbf{P} & 0 \end{pmatrix} \psi_d(x) - m_0 c \psi_d(x) = 0.$$
 (80)

For the limit that m = 0, then

$$\mathbf{P}_c \psi_l = 0, \quad \mathbf{P}\psi_r = 0. \tag{81}$$

and $p^0 = |\vec{p}|$, which implies that

$$(\boldsymbol{\sigma}\cdot\hat{\mathbf{p}})\psi_r=\psi_r,\quad (\boldsymbol{\sigma}\cdot\hat{\mathbf{p}})\psi_l=-\psi_l,$$
 (82)