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Minkowski Space and Lorentz Transformation
Difine the Minkowski contravariant 4-vector as:

xµ = (x0 = ct,~x), (1)

and the Minkowski covariant 4-vector as:

xµ = (x0 = −ct,~x), (2)

with the metric tensor

gµν = 0 if µ 6= ν ; − g00 = g11 = g22 = g33 = 1. (3)
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A linear transformation on the xµ given as follows

x ′µ = Λ
µ
ν (4)

is called Homogeneous Lorentz transformation ( HLT ), or
simply LT if the following condition is met:

x ′µx ′µ = xµ (5)

or in matrix notation as

ΛTgΛ = g or ΛTg = gΛ−1. (6)
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Since there exists an identity Lorentz transformation,Λ = I,
and an inverse Lorentz transformation, Λ−1, namely both I
and Λ−1 exist.
Therefore LT forms a group SO(3,1) because:

(Λ1Λ2)
Tg(Λ1Λ2) = ΛT

2 ΛT
1 gΛ1Λ2 = g . (7)

The condition detΛ = 1 is automatically satisfied. We shall
only consider the proper LT in which Λ0

0 > 1 in this lecture.
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Since the condition ΛtgΛ = g provide 10 constraints among
16 matrix elements of λ, the remaining 6 independent
coefficients serve as the 6 group parameters, specified as
Λ = Λ(~θ,~ξ) and

~θ = (θ1, θ2, θ3) = rotation, (8a)

~ξ = (ξ1, ξ2, ξ3) = Lorentz boost. (8b)
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Generators of Lorentz Group
The generators of the group are given:

Ai =
∂

∂θi
Λ(~θ,~ξ), Bi =

∂

∂ξ i
Λ(~θ,~ξ), (8a,b)

For the Lorentz boost along 1-axis with angle ξ,

Λ =


cosh ξ − sinh ξ 0 0
− sinh ξ cosh ξ 0 0

0 0 1 0
0 0 0 1

 . (9)

where ξ = tanh−1 β and
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B1 =


0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 . (10a)

similarly,

B2 =


0 0 −1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 , B3 =


0 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 0

 .

(10b,c)
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And for the generators if rotation, we have

A1 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 (11a)

and

and A2 =


0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

 , A3 =


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 .

(11b,c)
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SO(3,1) Lie algebra as:

[Ai ,Aj ] = −εkijAk , [Ai ,Bj ] = −εkijBk , (12)

Canonical formulation of algebra:

Mµν = xµ ∂

∂xν
− xν ∂

∂xµ
, (13a)

[Mµν,Mαβ] = −g νβMµα − gµαMνβ + g ναMµβ + gµβMνα.
(13b)
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If we denote

Li =
1

2

(
Ai

i
+ Bi

)
, and Ri =

1

2

(
Ai

i
− Bi

)
. (14a,b)

The algebra takes as

[Li , Lj ] = iεkijLk , (15a)

[Li ,Ri ] = 0, (15b)

[Ri ,Rj ] = iεkijRk . (15c)
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Irreducible Representations of

Lorentz Group and Weyl Spinors
Consider the finite dimensional representations, denoted by
(l , r) with the basis

|l ,m〉 ⊗ |r , n〉 ≡ |l ,m; r , n〉 (16)

where

−l 6 m 6 l , − r 6 n 6 r , and l , r = half integers.
(17)

The simpliest representation of the generators, an one
dimensional (0, 0)-representation read as

〈0, 0; 0, 0|Li |0, 0; 0, 0〉 = 〈0, 0; 0, 0|Ri |0, 0; 0, 0〉 = 0, (18)
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(12 , 0)-representation: left-handed-spinor

|1
2

,m; 0, 0〉 (19)

(0, 1
2)-representation: right-handed-spinor

|0, 0;
1

2
, n〉 (20)

then we have

L
( 12 ,0)
i =

1

2
σi, R

( 12 ,0)
i = 0, (0.21a)

L
(0, 12 )
i = 0, R

(0, 12 )
i =

1

2
σi, (0.21b)
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which lead to

A
( 12 ,0)
i =

i

2
σi, B

( 12 ,0)
i =

1

2
σi, (0.22a)

A
(0, 12 )
i =

i

2
σi, B

(0, 12 )
i = −1

2
σi, (0.22b)

and the 2-dimensional irreducible representation of Lorentz
group as

D( 12 ,0)(~θ,~ξ) = exp

(
i

2
~σ · (~θ − i~ξ)

)
, (23a)

D(0, 12 )(~θ,~ξ) = exp

(
i

2
~σ · (~θ + i~ξ)

)
. (23b)
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As a quick check that

D( 12 ,0)†(~θ,~ξ) = exp

(
− i

2
~σ · (~θ + i~ξ)

)
6= D( 12 ,0)(~θ,~ξ)−1,

D(0, 12 )†(~θ,~ξ) = exp

(
− i

2
~σ · (~θ − i~ξ)

)
6= D(0, 12 )(~θ,~ξ)−1,

Let us perform the identifications

|1
2

,
1

2
〉l 7−→

(
1
0

)
= e1, |1

2
,−1

2
〉l 7−→

(
0
1

)
= e2, (25a,b)
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then

ψl (x) = ψa
l (x)ea =

(
ψ1
l (x)

ψ2
l (x)

)
, (26)

the Lorentz Transformation as

ψl (x) 7−→ ψ′l (x
′) = D( 12 ,0)(~θ,~ξ)ψl (Λ

−1x ′), (27)

Similarly if

ψr (x) = ψa
r (x)fa = ψ1

r (x)

(
1
0

)
+ ψ2

r (x)

(
0
1

)
=

(
ψ1
r (x)

ψ2
r (x)

)
,

(28)

the transformation reads as

ψr (x) 7−→ ψ′r (x
′) = D(0, 12 )(~θ,~ξ)ψr (Λ

−1x ′)). (29)
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SO(3,1) and SL(2,C)
SL(2,C) transformation in C2-space:

ξ ′ =

(
ξ ′1

ξ ′2

)
= L

(
ξ1

ξ2

)
=

(
a b
c d

)(
ξ1

ξ2

)
. (30)

where

det L =

∣∣∣∣ a b
c d

∣∣∣∣ = ab− bc = 1, (31)

If we exponentiate L by a 2× 2 matrix A, i.e.

L = eA, (32)
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Then we have the following proposition

Proposition 1.

If a matrix L can be expressed as L = eA, then

det L = eTr A. (33)

Hence we ensure that

det D( 12 ,0)(~θ,~ξ) = det e
i
2~σ·(~θ−i~ξ) = eTr i

2~σ·(~θ−i~ξ) = 1, (34)

and

det D(0, 12 )(~θ,~ξ) = det e
i
2~σ·(~θ+i~ξ) = eTr i

2~σ·(~θ+i~ξ) = 1. (35)
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The isomorphism of SL(2,C) onto SO(3,1) in Lorentz
transformation can be demonstrated as follows:
let

X = xµσµ =

(
−x0 + x3 x1 − ix2

x1 + ix2 −x0 − x3

)
, (36)

and

det X = (x0)2 −~x2. (37)

which leads to the Lorentz Transformation on X as

X′ = D( 12 ,0)(~θ,~ξ)XD( 12 ,0)†(~θ,~ξ), (38)
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because of the invariance of the length of the space-time
vector,

det X′ = det X. (39)

As an example when O′-frame is boost along the 3rd axis, i.e.

X′ = e
1
2σ3ξXe

1
2σ3ξ =

(
e

1
2 ξ 0

0 e−
1
2 ξ

)
X

(
e

1
2 ξ 0

0 e−
1
2 ξ

)
. (40)

we regain the LT as follows

x ′0 = cosh ξx0 − sinh ξx3, (41a)

x ′1 = x1, (41b)

x ′2 = x2, (41c)

x ′3 = − sinh ξx0 + cosh ξx3. (41d)
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Chiral Transformation

K = chiral operator, which is a discrete transformation
between left handed irreducible representations and the right
handed irreducible representations
It is an antilinear operator, i.e.

K(aψ + bϕ) = a∗Kψ + b∗Kϕ, (42)

as well as an antiunitary operator:

(Kψ,Kϕ) = (ϕ, ψ) = (ψ, ϕ)∗. (43)
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It is nothing to with the space-time coordinates, hence

KAiK−1 = Ai , KBiK−1 = Bi . (44)

but the operators Li and Ri transform as follows

KLiK−1 =
1

2
K
(
Ai

i
+ Bi

)
K−1 = −Ri , KRiK−1 = −Li ,

(45a,b)

therefore we reach the following proposition if the basis of
(12 , 0)- and (0, 1

2)-representation are abbreviated by

|j ,m; 0, 0〉 = Ljm, (46a)

|0, 0, k , n〉 = Rkn, (46b)
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then

Proposition 2.

The vector KLjm is the eigenvector of R2 and R3 with
the eigenvalues j(j + 1) and −m respectively. While the
vector KRkn is the eigenvector of L2 and L3 with the
eigenvalues k(k + 1) and −n respectively.

Since 2 = R2K, K~L = −~RK
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then we have

R2KLjm = KL2Ljm = j(j + 1)KLjm,

R3KLjm = −KL3Ljm = −mKLjm,

Therefore

KLjm = γ(m)Rj−m.

Similarly

KRkn = δnLk−n.

Hence we have

(KLjm,KLjm′) = γ∗(m)γ(m′)(Rj ,−m,Rj ,−m′) = (Ljm′ , Ljm),
(47)

or γ∗(m)γ(m′)δ−m,−m′ = δm′m
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Take spinor for instance, we obtain that

KL 1
2m

= γ(n)KR 1
2−m

, KR 1
2n

= δ(n)KL 1
2−n

, (48ab)

or

K
(

1
0

)
l

= γ(
1

2
)

(
0
−1

)
r

K
(

0
1

)
l

= γ(−1

2
)

(
−1
0

)
r

,

(49a,b)

K
(

1
0

)
r

= δ(
1

2
)

(
0
−1

)
l

K
(

0
1

)
r

= δ(−1

2
)

(
−1
0

)
l

,

(49c,d)
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Let us evaluate the following matrix elements

D
( 12 ,0)
mm′ = (L 1

2 ,m
, e

~θ·~A+~ξ·~BL 1
2 ,m

′) = (Ke
~θ·~A+~ξ·~BL 1

2 ,m
′ ,KL 1

2 ,m
)

= γ∗(m′)γ(m)(e
~θ·~A+~ξ·~BR 1

2 ,−m′
,R 1

2 ,−m
)

= γ(m)D
(0, 12 )∗
−m,−m′γ

∗(m′), (50)

or

D( 12 ,0) =

(
0 γ(12)

γ(−1
2) 0

)
D(0, 12 )∗

(
0 γ∗(−1

2)
γ∗(12) 0

)
.

(51)
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Similarly,

D(0, 12 ) =

(
0 δ(12)

δ(−1
2) 0

)
D( 12 ,0)∗

(
0 δ∗(−1

2)
δ∗(12) 0

)
. (52)

In order to be consistent with the LT for spinors, one chooses

γ(
1

2
) = δ(

1

2
) = −γ(−1

2
) = −δ(−1

2
) = 1 (53)

hence we have

ε =

(
0 1
−1 0

)
(54)

and

εσ∗i ε−1 =

(
0 1
−1 0

)
σ∗i

(
0 −1
1 0

)
= −σi . (55)
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Spinor space and Co-spinor space

Let

{ V( 12 ,0) : left-hand spinor space

ea : (a = 1, 2) two left-handed spinor
(56)

A spinor in V
( 1̇2 ,0){

V
( 1̇2 ,0)

: co-left-hand spinor space

eȧ : (a = 1, 2) two co-left-handed spinor
(57)

which is related to the left-handed spinor by

ψ̇ = ψT εT = (ψ̇1, ψ̇1) = (ψ1, ψ2)εT = (ψ1, ψ2)ε−1. (58)
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and the corresponding LT is given as

ψ̇
L.T .7−→ ψ̇′ = ψ′T ε−1 = ψTDT ( 12 ,0)ε−1 (59)

= ψ̇(εD( 12 ,0)∗ε−1)† = ψ̇D(0, 12 )†. (60)

Similarly the LT for the co-right-handed spinor is given as

ϕ̇
L.T .7−→ ϕ̇′ = ϕ′T εT = ϕ̇D( 12 ,0)†. (61)

Let us construct the 4-dimensional product space as

V
( 12 ,

1̇
2 )

: ea ḟ
b as basis (62a)

V
( 1̇2 ,

1
2 )

: ėaf
b as basis (62b)
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then any element in V
( 12 ,

1̇
2 )

and in V
( 1̇2 ,

1
2 )

can be written

respectively as

U ( 12 ,
1̇
2 ) =

(
u1
1̇

u1
2̇

u2
1̇

u2
2̇

)
. (63)

and

U ( 1̇2 ,
1
2 ) =

(
u1̇1 u2̇1
u1̇2 u2̇2

)
. (64)

It is obvious that the space-time matrix

X = xµσµ =

(
−x0 + x3 x1 − ix2

x1 + ix2 −x0 − x3

)
, (65)

transforms as an element of V
( 12 ,

1̇
2 )

-representation, while

Xc = εX∗ε−1 (66)

transforms as an element of V
( 1̇2 ,

1
2 )

-representation.
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We are now in the position to emphasize the next proposition

Proposition 3.

An operator of the (12 , 1̇
2)-representation acts upon

a vector of the (0, 1
2)-representation yields a vector

of (12 , 0)-representation. Conversely an operator of

the ( 1̇2 , 1
2)-representation acts upon a vector of the

(12 , 0)-representation will yield a vector of the (0, 1
2)-

representation.

The proof goes as; If A ∈ (12 , 1̇
2)-representation,

ξ ∈ (0, 1
2)-representation, then

η
L.T .7−→ η′ = A′ξ ′ = D( 12 ,0)AD( 12 ,0)†D(0, 12 )ξ = D( 12 ,0)η, (67)
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Hence we have a left-handed spinor, i.e.

η = Aξ, (68)

Similarly that

if

 A ∈ ( 1̇2 , 1
2)− representation,

η ∈ (12 , 0)− representation.

Therefore we reach as follows,

ξ
L.T .7−→ ξ ′ = A′cη′ = D(0, 12 )AcD

(0, 12 )†D( 12 ,0)ξ = D(0, 12 )ξ,
(69)
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Dirac spinor and Dirac equation
Since any Lorentz 4-vector with the construction

U = σµu
µ, Uc = σc

µu
µ, (70)

transforms as (12 , 1̇
2)-representation and ( 1̇2 , 1

2)-representation
respectively. Therefore,

Pcψl = m0cψr , (0.71a)

Pψr = m0cψl , (0.71b)

hence we have (
0 Pc

P 0

)(
ψr

ψl

)
= m0c

(
ψr

ψl

)
, (72)
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If we define the Dirac spinor ψd as ψr ⊕ ψl , then

(
0 Pc

P 0

)
ψd (x) = m0cψd (x), (73)

or

[(
0 iσ

µ
c

iσµ 0

)
∂µ +

m0c

h̄

]
ψd (x) = 0, (74)

which can be cast into

(
iγµ∂µ +

m0c

h̄

)
ψd (x) = 0, (75)
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with γµ defined as

γµ =

(
0 σ

µ
c

σµ 0

)
or γ0 =

(
0 I
I 0

)
, γi =

(
0 −σi

σi 0

)
.

(76)

The covariant formulation of Dirac equation does not imply
that

γµ∂µ = γ′µ∂′µ

In fact that we have the following proposition.
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Proposition 4.

The gamma matrices γµ are universal in all Lorentz frame,
namely the Dirac equation in another Lorentz frame, i.e.
the O′-system always takes the same gamma matrices
γµ used in O-system. The equation in O′-system is ex-
pressed as

(
iγµ∂′µ +

m0c

h̄

)
ψ′d (x

′) = 0.
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It can be proved by defining

D(~θ,~ξ) = D(0, 12 )(~θ,~ξ)⊕D( 12 ,0)(~θ,~ξ)

and multiplying it upon the Dirac equation as follows

(
iDγµD−1∂µ +

m0c

h̄

)
Dψd (x) = 0. (77)

One can show that

DγµD−1 = Λ
µ
ν γν, (78)

and the Dirac equation in the new Lorentz frame, i.e. O′frame
reads as (

iγµ∂′µ +
m0c

h̄

)
ψ′d (x

′) = 0, (79)

by identifying ψ′d (x
′) ≡ D(~θ,~ξ)ψd (x) = D(~θ,~ξ)ψd (Λ

−1x ′).
Kow Lung Chang Lorentz Symmetry, Weyl Spinors, Chirality and Dirac Equation



Zero Mass Limit and Helicity of Weyl spinors
Last demonstration for zero mass limit in Dirac equation

(
0 Pc

P 0

)
ψd (x)−m0cψd (x) = 0. (80)

For the limit that m = 0, then

Pcψl = 0, Pψr = 0. (81)

and p0 = |~p|, which implies that

(σ · p̂)ψr = ψr , (σ · p̂)ψl = −ψl , (82)
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