Lorentz Symmetry, Weyl Spinors, Chirality and Dirac Equation

Kow Lung Chang
Physics Department, National Taiwan University

May 2, 2013

Contents

- Minkowski Space and Lorentz Transformation
- Generators of Lorentz Group
- Irreducible Representations of Lorentz Group and Weyl Spinors
- SO $(3,1)$ and $\mathrm{SL}(2, \mathrm{C})$
- Chiral Transformation and Spinor Algebra
- Spinor space and Co-spinor space
- Dirac spinor and Dirac equation
- Invariance of the γ matrices in all Lorentz frames
- Zero Mass Limit and Helicity of Weyl spinors

Minkowski Space and Lorentz Transformation

 Difine the Minkowski contravariant 4-vector as:$$
\begin{equation*}
x^{\mu}=\left(x^{0}=c t, \vec{x}\right) \tag{1}
\end{equation*}
$$

and the Minkowski covariant 4-vector as:

$$
\begin{equation*}
x_{\mu}=\left(x^{0}=-c t, \vec{x}\right) \tag{2}
\end{equation*}
$$

with the metric tensor

$$
\begin{equation*}
g_{\mu \nu}=0 \quad \text { if } \quad \mu \neq v ; \quad-g_{00}=g_{11}=g_{22}=g_{33}=1 \tag{3}
\end{equation*}
$$

A linear transformation on the x^{μ} given as follows

$$
\begin{equation*}
x^{\prime \mu}=\boldsymbol{\Lambda}_{v}^{\mu} \tag{4}
\end{equation*}
$$

is called Homogeneous Lorentz transformation (HLT), or simply LT if the following condition is met:

$$
\begin{equation*}
x^{\prime \mu} x_{\mu}^{\prime}=x^{\mu} \tag{5}
\end{equation*}
$$

or in matrix notation as

$$
\begin{equation*}
\boldsymbol{\Lambda}^{T} \mathbf{g} \boldsymbol{\Lambda}=\mathbf{g} \quad \text { or } \quad \boldsymbol{\Lambda}^{T} \mathbf{g}=\mathbf{g} \boldsymbol{\Lambda}^{-1} . \tag{6}
\end{equation*}
$$

Since there exists an identity Lorentz transformation, $\Lambda=\mathbf{I}$, and an inverse Lorentz transformation, $\boldsymbol{\Lambda}^{-1}$, namely both \mathbf{I} and $\boldsymbol{\Lambda}^{-1}$ exist.
Therefore LT forms a group $\mathrm{SO}(3,1)$ because:

$$
\begin{equation*}
\left(\boldsymbol{\Lambda}_{1} \boldsymbol{\Lambda}_{2}\right)^{T} g\left(\boldsymbol{\Lambda}_{1} \boldsymbol{\Lambda}_{2}\right)=\boldsymbol{\Lambda}_{2}^{T} \boldsymbol{\Lambda}_{1}^{T} g \boldsymbol{\Lambda}_{1} \boldsymbol{\Lambda}_{2}=g . \tag{7}
\end{equation*}
$$

The condition $\operatorname{det} \boldsymbol{\Lambda}=1$ is automatically satisfied. We shall only consider the proper LT in which $\Lambda_{0}^{0} \geqslant 1$ in this lecture.

Since the condition $\boldsymbol{\Lambda}^{t} g \boldsymbol{\Lambda}=g$ provide 10 constraints among 16 matrix elements of $\boldsymbol{\lambda}$, the remaining 6 independent coefficients serve as the 6 group parameters, specified as $\boldsymbol{\Lambda}=\boldsymbol{\Lambda}(\vec{\theta}, \vec{\zeta})$ and

$$
\begin{align*}
& \vec{\theta}=\left(\theta^{1}, \theta^{2}, \theta^{3}\right)=\text { rotation }, \tag{8a}\\
& \vec{\zeta}=\left(\xi^{1}, \xi^{2}, \xi^{3}\right)=\text { Lorentz boost. }
\end{align*}
$$

(8b)

Generators of Lorentz Group

The generators of the group are given:

$$
\begin{equation*}
A_{i}=\frac{\partial}{\partial \theta^{i}} \boldsymbol{\Lambda}(\vec{\theta}, \vec{\xi}), \quad B_{i}=\frac{\partial}{\partial \tilde{\xi}^{i}} \boldsymbol{\Lambda}(\vec{\theta}, \vec{\xi}) \tag{8a,b}
\end{equation*}
$$

For the Lorentz boost along 1 -axis with angle ξ,

$$
\boldsymbol{\Lambda}=\left(\begin{array}{cccc}
\cosh \xi & -\sinh \xi & 0 & 0 \tag{9}\\
-\sinh \xi & \cosh \xi & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

where $\xi=\tanh ^{-1} \beta$ and

$$
B_{1}=\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \tag{10a}\\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

similarly,

$$
B_{2}=\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad B_{3}=\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right) .
$$

(10b,c)

And for the generators if rotation, we have

$$
A_{1}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \tag{11a}\\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right)
$$

and

$$
\text { and } A_{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right), \quad A_{3}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \text {. }
$$

SO $(3,1)$ Lie algebra as:

$$
\begin{equation*}
\left[A_{i}, A_{j}\right]=-\epsilon_{i j}^{k} A_{k}, \quad\left[A_{i}, B_{j}\right]=-\epsilon_{i j}^{k} B_{k}, \tag{12}
\end{equation*}
$$

Canonical formulation of algebra:

$$
\begin{gather*}
M^{\mu \nu}=x^{\mu} \frac{\partial}{\partial x_{v}}-x^{\nu} \frac{\partial}{\partial x_{\mu}}, \tag{13a}\\
{\left[M^{\mu v}, M^{\alpha \beta}\right]=-g^{\nu \beta} M^{\mu \alpha}-g^{\mu \alpha} M^{\nu \beta}+g^{\nu \alpha} M^{\mu \beta}+g^{\mu \beta} M^{\nu \alpha}} \tag{13b}
\end{gather*}
$$

If we denote

$$
L_{i}=\frac{1}{2}\left(\frac{A_{i}}{i}+B_{i}\right), \quad \text { and } \quad R_{i}=\frac{1}{2}\left(\frac{A_{i}}{i}-B_{i}\right) . \quad(14 \mathrm{a}, \mathrm{~b})
$$

The algebra takes as

$$
\begin{align*}
{\left[L_{i}, L_{j}\right] } & =i \epsilon_{i j}^{k} L_{k}, \tag{15a}\\
{\left[L_{i}, R_{i}\right] } & =0, \tag{15b}\\
{\left[R_{i}, R_{j}\right] } & =i \epsilon_{i j}^{k} R_{k} . \tag{15c}
\end{align*}
$$

Irreducible Representations of

Lorentz Group and Weyl Spinors

Consider the finite dimensional representations, denoted by (I, r) with the basis

$$
\begin{equation*}
|I, m\rangle \otimes|r, n\rangle \equiv|I, m ; r, n\rangle \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
-I \leqslant m \leqslant I, \quad-r \leqslant n \leqslant r, \quad \text { and } \quad I, r=\text { half integers. } \tag{17}
\end{equation*}
$$

The simpliest representation of the generators, an one dimensional (0,0)-representation read as

$$
\begin{equation*}
\langle 0,0 ; 0,0| L_{i}|0,0 ; 0,0\rangle=\langle 0,0 ; 0,0| R_{i}|0,0 ; 0,0\rangle=0, \tag{18}
\end{equation*}
$$

$\left(\frac{1}{2}, 0\right)$-representation: left-handed-spinor

$$
\begin{equation*}
\left|\frac{1}{2}, m ; 0,0\right\rangle \tag{19}
\end{equation*}
$$

($0, \frac{1}{2}$)-representation: right-handed-spinor

$$
\begin{equation*}
\left|0,0 ; \frac{1}{2}, n\right\rangle \tag{20}
\end{equation*}
$$

then we have

$$
\begin{array}{ll}
L_{i}^{\left(\frac{1}{2}, 0\right)}=\frac{1}{2} \sigma_{\mathbf{i}}, & R_{i}^{\left(\frac{1}{2}, 0\right)}=0, \\
L_{i}^{\left(0, \frac{1}{2}\right)}=0, & R_{i}^{\left(0, \frac{1}{2}\right)}=\frac{1}{2} \sigma_{\mathbf{i}},
\end{array}
$$

which lead to

$$
\begin{array}{ll}
A_{i}^{\left(\frac{1}{2}, 0\right)}=\frac{i}{2} \sigma_{\mathbf{i}}, & B_{i}^{\left(\frac{1}{2}, 0\right)}=\frac{1}{2} \sigma_{\mathbf{i}} \\
A_{i}^{\left(0, \frac{1}{2}\right)}=\frac{i}{2} \sigma_{\mathbf{i}}, & B_{i}^{\left(0, \frac{1}{2}\right)}=-\frac{1}{2} \sigma_{\mathbf{i}} \tag{0.22b}
\end{array}
$$

and the 2-dimensional irreducible representation of Lorentz group as

$$
\begin{align*}
D^{\left(\frac{1}{2}, 0\right)}(\vec{\theta}, \vec{\xi}) & =\exp \left(\frac{i}{2} \vec{\sigma} \cdot(\vec{\theta}-i \vec{\xi})\right) \tag{23a}\\
D^{\left(0, \frac{1}{2}\right)}(\vec{\theta}, \vec{\xi}) & =\exp \left(\frac{i}{2} \vec{\sigma} \cdot(\vec{\theta}+i \vec{\xi})\right) \tag{23b}
\end{align*}
$$

As a quick check that

$$
\begin{aligned}
& D^{\left(\frac{1}{2}, 0\right) \dagger}(\vec{\theta}, \vec{\xi})=\exp \left(-\frac{i}{2} \vec{\sigma} \cdot(\vec{\theta}+i \vec{\xi})\right) \neq D^{\left(\frac{1}{2}, 0\right)}(\vec{\theta}, \vec{\xi})^{-1} \\
& D^{\left(0, \frac{1}{2}\right) \dagger}(\vec{\theta}, \vec{\xi})=\exp \left(-\frac{i}{2} \vec{\sigma} \cdot(\vec{\theta}-i \vec{\xi})\right) \neq D^{\left(0, \frac{1}{2}\right)}(\vec{\theta}, \vec{\xi})^{-1}
\end{aligned}
$$

Let us perform the identifications

$$
\left|\frac{1}{2}, \frac{1}{2}\right\rangle_{I} \longmapsto\binom{1}{0}=e_{1}, \quad\left|\frac{1}{2},-\frac{1}{2}\right\rangle_{I} \longmapsto\binom{0}{1}=e_{2}, \quad(25 a, b)
$$

then

$$
\begin{equation*}
\psi_{l}(x)=\psi_{l}^{a}(x) e_{a}=\binom{\psi_{l}^{1}(x)}{\psi_{l}^{2}(x)} \tag{26}
\end{equation*}
$$

the Lorentz Transformation as

$$
\begin{equation*}
\psi_{l}(x) \longmapsto \psi_{l}^{\prime}\left(x^{\prime}\right)=D^{\left(\frac{1}{2}, 0\right)}(\vec{\theta}, \vec{\xi}) \psi_{l}\left(\Lambda^{-1} x^{\prime}\right) \tag{27}
\end{equation*}
$$

Similarly if

$$
\psi_{r}(x)=\psi_{r}^{a}(x) f_{a}=\psi_{r}^{1}(x)\binom{1}{0}+\psi_{r}^{2}(x)\binom{0}{1}=\binom{\psi_{r}^{1}(x)}{\psi_{r}^{2}(x)}
$$

the transformation reads as

$$
\begin{equation*}
\left.\psi_{r}(x) \longmapsto \psi_{r}^{\prime}\left(x^{\prime}\right)=D^{\left(0, \frac{1}{2}\right)}(\vec{\theta}, \vec{\xi}) \psi_{r}\left(\boldsymbol{\Lambda}^{-1} x^{\prime}\right)\right) . \tag{29}
\end{equation*}
$$

SO $(3,1)$ and $S L(2, C)$

$\mathrm{SL}(2, \mathrm{C})$ transformation in \mathcal{C}^{2}-space:

$$
\xi^{\prime}=\binom{\xi^{\prime 1}}{\xi^{\prime 2}}=\mathbf{L}\binom{\xi^{1}}{\xi^{2}}=\left(\begin{array}{ll}
a & b \tag{30}\\
c & d
\end{array}\right)\binom{\xi^{1}}{\xi^{2}}
$$

where

$$
\operatorname{det} \mathbf{L}=\left|\begin{array}{ll}
a & b \tag{31}\\
c & d
\end{array}\right|=a b-b c=1
$$

If we exponentiate L by a 2×2 matrix \mathbf{A}, i.e.

$$
\begin{equation*}
\mathbf{L}=e^{\mathbf{A}} \tag{32}
\end{equation*}
$$

Then we have the following proposition
Proposition 1.
If a matrix \mathbf{L} can be expressed as $\mathbf{L}=e^{\mathbf{A}}$, then

$$
\begin{equation*}
\operatorname{det} \mathbf{L}=e^{\operatorname{Tr} \mathbf{A}} . \tag{33}
\end{equation*}
$$

Hence we ensure that

$$
\begin{equation*}
\operatorname{det} D^{\left(\frac{1}{2}, 0\right)}(\vec{\theta}, \vec{\zeta})=\operatorname{det} e^{\frac{i}{2} \vec{\sigma} \cdot(\vec{\theta}-i \vec{\xi})}=e^{\operatorname{Tr} \frac{i}{2} \cdot \vec{\sigma} \cdot(\vec{\theta}-i \vec{\xi})}=1 \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{det} D^{\left(0, \frac{1}{2}\right)}(\vec{\theta}, \vec{\xi})=\operatorname{det} e^{\frac{i}{2} \vec{\sigma} \cdot(\vec{\theta}+i \vec{\xi})}=e^{\operatorname{Tr} \frac{i}{2} \vec{\sigma} \cdot(\vec{\theta}+i \vec{\xi})}=1 . \tag{35}
\end{equation*}
$$

The isomorphism of $\operatorname{SL}(2, \mathrm{C})$ onto $\mathrm{SO}(3,1)$ in Lorentz transformation can be demonstrated as follows: let

$$
\mathbf{X}=x^{\mu} \boldsymbol{\sigma}_{\mu}=\left(\begin{array}{cc}
-x^{0}+x^{3} & x^{1}-i x^{2} \tag{36}\\
x^{1}+i x^{2} & -x^{0}-x^{3}
\end{array}\right),
$$

and

$$
\begin{equation*}
\operatorname{det} \mathbf{X}=\left(x^{0}\right)^{2}-\vec{x}^{2} \tag{37}
\end{equation*}
$$

which leads to the Lorentz Transformation on \mathbf{X} as

$$
\begin{equation*}
\mathbf{X}^{\prime}=D^{\left(\frac{1}{2}, 0\right)}(\vec{\theta}, \vec{\zeta}) \mathbf{X} D^{\left(\frac{1}{2}, 0\right) \dagger}(\vec{\theta}, \vec{\xi}), \tag{38}
\end{equation*}
$$

because of the invariance of the length of the space-time vector,

$$
\begin{equation*}
\operatorname{det} \mathbf{X}^{\prime}=\operatorname{det} \mathbf{X} \tag{39}
\end{equation*}
$$

As an example when \mathcal{O}^{\prime}-frame is boost along the 3rd axis, i.e.

$$
\mathbf{X}^{\prime}=e^{\frac{1}{2} \sigma_{3} \xi} \mathbf{X} e^{\frac{1}{2} \sigma_{3} \xi}=\left(\begin{array}{cc}
e^{\frac{1}{2} \xi} & 0 \tag{40}\\
0 & e^{-\frac{1}{2} \xi}
\end{array}\right) \mathbf{X}\left(\begin{array}{cc}
e^{\frac{1}{2} \xi} & 0 \\
0 & e^{-\frac{1}{2} \xi}
\end{array}\right) .
$$

we regain the LT as follows

$$
\begin{align*}
x^{\prime 0} & =\cosh \xi x^{0}-\sinh \xi x^{3} \tag{41a}\\
x^{\prime} & =x^{1} \tag{41b}\\
x^{\prime 2} & =x^{2} \tag{41c}\\
x^{\prime 3} & =-\sinh \xi x^{0}+\cosh \xi x^{3} \tag{41~d}
\end{align*}
$$

Chiral Transformation

$\mathcal{K}=$ chiral operator, which is a discrete transformation between left handed irreducible representations and the right handed irreducible representations
It is an antilinear operator, i.e.

$$
\begin{equation*}
\mathcal{K}(a \psi+b \varphi)=a^{*} \mathcal{K} \psi+b^{*} \mathcal{K} \varphi \tag{42}
\end{equation*}
$$

as well as an antiunitary operator:

$$
\begin{equation*}
\left(\mathcal{K}_{\psi}, \mathcal{K} \varphi\right)=(\varphi, \psi)=(\psi, \varphi)^{*} . \tag{43}
\end{equation*}
$$

It is nothing to with the space-time coordinates, hence

$$
\begin{equation*}
\mathcal{K} A_{i} \mathcal{K}^{-1}=A_{i}, \quad \mathcal{K} B_{i} \mathcal{K}^{-1}=B_{i} . \tag{44}
\end{equation*}
$$

but the operators L_{i} and R_{i} transform as follows
$\mathcal{K} L_{i} \mathcal{K}^{-1}=\frac{1}{2} \mathcal{K}\left(\frac{A_{i}}{i}+B_{i}\right) \mathcal{K}^{-1}=-R_{i}, \quad \mathcal{K} R_{i} \mathcal{K}^{-1}=-L_{i}$,
(45a,b)
therefore we reach the following proposition if the basis of $\left(\frac{1}{2}, 0\right)$ - and ($0, \frac{1}{2}$)-representation are abbreviated by

$$
\begin{align*}
& |j, m ; 0,0\rangle=L_{j m}, \tag{46a}\\
& |0,0, k, n\rangle=R_{k n}, \tag{46b}
\end{align*}
$$

Proposition 2.

The vector $\mathcal{K} L_{j m}$ is the eigenvector of R^{2} and R_{3} with the eigenvalues $j(j+1)$ and $-m$ respectively. While the vector $\mathcal{K} R_{k n}$ is the eigenvector of L^{2} and L_{3} with the eigenvalues $k(k+1)$ and $-n$ respectively.

Since ${ }^{2}=R^{2} \mathcal{K}, \mathcal{K} \vec{L}=-\vec{R} \mathcal{K}$
then we have

$$
\begin{array}{r}
R^{2} \mathcal{K} L_{j m}=\mathcal{K} L^{2} L_{j m}=j(j+1) \mathcal{K} L_{j m}, \\
R_{3} \mathcal{K} L_{j m}=-\mathcal{K} L_{3} L_{j m}=-m \mathcal{K} L_{j m},
\end{array}
$$

Therefore

$$
\mathcal{K} L_{j m}=\gamma(m) R_{j-m}
$$

Similarly

$$
\mathcal{K} R_{k n}=\delta n L_{k-n} .
$$

Hence we have
$\left(\mathcal{K} L_{j m}, \mathcal{K} L_{j m^{\prime}}\right)=\gamma^{*}(m) \gamma\left(m^{\prime}\right)\left(R_{j,-m}, R_{j,-m^{\prime}}\right)=\left(L_{j m^{\prime}}, L_{j m}\right)$,
or $\gamma^{*}(m) \gamma\left(m^{\prime}\right) \delta_{-m,-m^{\prime}}=\delta_{m^{\prime} m}$

Take spinor for instance, we obtain that

$$
\begin{equation*}
\mathcal{K} L_{\frac{1}{2} m}=\gamma(n) \mathcal{K} R_{\frac{1}{2}-m^{\prime}} \quad \mathcal{K} R_{\frac{1}{2} n}=\delta(n) \mathcal{K} L_{\frac{1}{2}-n^{\prime}} \tag{48ab}
\end{equation*}
$$

or
$\mathcal{K}\binom{1}{0}_{,}=\gamma\left(\frac{1}{2}\right)\binom{0}{-1}_{r}$
$\mathcal{K}\binom{0}{1}_{\text {, }}=\gamma\left(-\frac{1}{2}\right)\binom{-1}{0}_{r}$,
(49a,b)
$\mathcal{K}\binom{1}{0}_{r}=\delta\left(\frac{1}{2}\right)\binom{0}{-1}$,
$\mathcal{K}\binom{0}{1}_{r}=\delta\left(-\frac{1}{2}\right)\binom{-1}{0}_{\text {, }}$,
(49c, d)

Let us evaluate the following matrix elements

$$
\begin{align*}
D_{m m^{\prime}}^{\left(\frac{1}{2}, 0\right)} & =\left(L_{\frac{1}{2}, m} e^{\vec{\theta} \cdot \vec{A}+\vec{\xi} \cdot \vec{B}} L_{\frac{1}{2}, m^{\prime}}\right)=\left(\mathcal{K} e^{\vec{\theta} \cdot \vec{A}+\vec{\xi} \cdot \vec{B}} L_{\frac{1}{2}, m^{\prime}} \mathcal{K} L_{\frac{1}{2}, m}\right) \\
& =\gamma^{*}\left(m^{\prime}\right) \gamma(m)\left(e^{\vec{\theta} \cdot \vec{A}+\vec{\xi} \cdot \vec{B}} R_{\frac{1}{2},-m^{\prime}}, R_{\frac{1}{2},-m}\right) \\
& =\gamma(m) D_{-m,-m^{\prime}}^{\left(0, \frac{1}{2}\right) *} \gamma^{*}\left(m^{\prime}\right), \tag{50}
\end{align*}
$$

or

$$
D^{\left(\frac{1}{2}, 0\right)}=\left(\begin{array}{cc}
0 & \gamma\left(\frac{1}{2}\right) \\
\gamma\left(-\frac{1}{2}\right) & 0
\end{array}\right) D^{\left(0, \frac{1}{2}\right) *}\left(\begin{array}{cc}
0 & \gamma^{*}\left(-\frac{1}{2}\right) \\
\gamma^{*}\left(\frac{1}{2}\right) & 0
\end{array}\right) .
$$

(51)

Similarly,

$$
D^{\left(0, \frac{1}{2}\right)}=\left(\begin{array}{cc}
0 & \delta\left(\frac{1}{2}\right) \tag{52}\\
\delta\left(-\frac{1}{2}\right) & 0
\end{array}\right) D^{\left(\frac{1}{2}, 0\right) *}\left(\begin{array}{cc}
0 & \delta^{*}\left(-\frac{1}{2}\right) \\
\delta^{*}\left(\frac{1}{2}\right) & 0
\end{array}\right)
$$

In order to be consistent with the LT for spinors, one chooses

$$
\begin{equation*}
\gamma\left(\frac{1}{2}\right)=\delta\left(\frac{1}{2}\right)=-\gamma\left(-\frac{1}{2}\right)=-\delta\left(-\frac{1}{2}\right)=1 \tag{53}
\end{equation*}
$$

hence we have

$$
\epsilon=\left(\begin{array}{cc}
0 & 1 \tag{54}\\
-1 & 0
\end{array}\right)
$$

and

$$
\epsilon \sigma_{i}^{*} \epsilon^{-1}=\left(\begin{array}{cc}
0 & 1 \tag{55}\\
-1 & 0
\end{array}\right) \sigma_{i}^{*}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=-\sigma_{i}
$$

Spinor space and Co-spinor space

$$
\text { Let } \begin{cases}\mathcal{V}_{\left(\frac{1}{2}, 0\right)} & : \text { left-hand spinor space } \tag{56}\\ e_{a} & :(a=1,2) \text { two left-handed spinor }\end{cases}
$$

A spinor in $\mathcal{V}_{\left(\frac{1}{2}, 0\right)}$

$$
\begin{cases}\mathcal{V}_{\left(\frac{1}{2}, 0\right)} & : \text { co-left-hand spinor space } \tag{57}\\ e_{\dot{a}} & :(a=1,2) \text { two co-left-handed spinor }\end{cases}
$$

which is related to the left-handed spinor by

$$
\begin{equation*}
\dot{\psi}=\psi^{T} \epsilon^{T}=\left(\dot{\psi}_{1}, \dot{\psi}_{1}\right)=\left(\psi^{1}, \psi^{2}\right) \epsilon^{T}=\left(\psi^{1}, \psi^{2}\right) \epsilon^{-1} . \tag{58}
\end{equation*}
$$

and the corresponding LT is given as

$$
\begin{align*}
\dot{\psi} \xrightarrow{\text { L.T. }} \dot{\psi}^{\prime} & =\psi^{\prime T} \epsilon^{-1}=\psi^{T} D^{T\left(\frac{1}{2}, 0\right)} \epsilon^{-1} \tag{59}\\
& =\dot{\psi}\left(\epsilon D^{\left(\frac{1}{2}, 0\right) *} \epsilon^{-1}\right)^{\dagger}=\dot{\psi} D^{\left(0, \frac{1}{2}\right) \dagger} \tag{60}
\end{align*}
$$

Similarly the LT for the co-right-handed spinor is given as

$$
\begin{equation*}
\dot{\varphi} \stackrel{\text { L.T. }}{\longmapsto} \dot{\varphi}^{\prime}=\varphi^{\prime T} \epsilon^{T}=\dot{\varphi} D^{\left(\frac{1}{2}, 0\right) \dagger} . \tag{61}
\end{equation*}
$$

Let us construct the 4-dimensional product space as

$$
\begin{align*}
& \mathcal{V}_{\left(\frac{1}{2}, \frac{1}{2}\right)}: e_{a} \dot{f}^{b} \text { as basis } \tag{62a}\\
& \mathcal{V}_{\left(\frac{1}{2}, \frac{1}{2}\right)}: \dot{e}_{a} f^{b} \text { as basis } \tag{62b}
\end{align*}
$$

then any element in $\mathcal{V}_{\left(\frac{1}{2}, \frac{i}{2}\right)}$ and in $\mathcal{V}_{\left(\frac{i}{2}, \frac{1}{2}\right)}$ can be written respectively as

$$
U^{\left(\frac{1}{2}, \frac{i}{2}\right)}=\left(\begin{array}{ll}
u_{j}^{1} & u_{\dot{2}}^{1} \tag{63}\\
u_{\dot{i}}^{2} & u_{\dot{2}}^{2}
\end{array}\right) .
$$

and

$$
U^{\left(\frac{i}{2}, \frac{1}{2}\right)}=\left(\begin{array}{cc}
u_{1}^{i} & u_{1}^{2} \tag{64}\\
u_{2}^{i} & u_{2}^{2}
\end{array}\right) .
$$

It is obvious that the space-time matrix

$$
\mathbf{X}=x^{\mu} \boldsymbol{\sigma}_{\mu}=\left(\begin{array}{cc}
-x^{0}+x^{3} & x^{1}-i x^{2} \tag{65}\\
x^{1}+i x^{2} & -x^{0}-x^{3}
\end{array}\right),
$$

transforms as an element of $\mathcal{V}_{\left(\frac{1}{2}, \frac{1}{2}\right)}$-representation, while

$$
\begin{equation*}
\mathbf{X}_{c}=\epsilon \mathbf{X}^{*} \epsilon^{-1} \tag{66}
\end{equation*}
$$

We are now in the position to emphasize the next proposition

Proposition 3.

An operator of the $\left(\frac{1}{2}, \frac{1}{2}\right)$-representation acts upon a vector of the $\left(0, \frac{1}{2}\right)$-representation yields a vector of $\left(\frac{1}{2}, 0\right)$-representation. Conversely an operator of the $\left(\frac{1}{2}, \frac{1}{2}\right)$-representation acts upon a vector of the $\left(\frac{1}{2}, 0\right)$-representation will yield a vector of the $\left(0, \frac{1}{2}\right)$ representation.

The proof goes as; If $\mathbf{A} \in\left(\frac{1}{2}, \frac{1}{2}\right)$-representation, $\xi \in\left(0, \frac{1}{2}\right)$-representation, then

$$
\begin{equation*}
\eta \stackrel{L . T}{\longmapsto} \eta^{\prime}=\mathbf{A}^{\prime} \xi^{\prime}=D^{\left(\frac{1}{2}, 0\right)} \mathbf{A} D^{\left(\frac{1}{2}, 0\right) \dagger} D^{\left(0, \frac{1}{2}\right)} \xi=D^{\left(\frac{1}{2}, 0\right)} \eta \tag{67}
\end{equation*}
$$

Hence we have a left-handed spinor, i.e.

$$
\begin{equation*}
\eta=\mathbf{A} \xi \tag{68}
\end{equation*}
$$

Similarly that

$$
\text { if }\left\{\begin{array}{l}
\mathbf{A} \in\left(\frac{1}{2}, \frac{1}{2}\right) \text {-representation } \\
\eta \in\left(\frac{1}{2}, 0\right) \text {-representation }
\end{array}\right.
$$

Therefore we reach as follows,

$$
\begin{equation*}
\xi \stackrel{L . T}{\longmapsto} \xi^{\prime}=\mathbf{A}_{c}^{\prime} \eta^{\prime}=D^{\left(0, \frac{1}{2}\right)} \mathbf{A}_{c} D^{\left(0, \frac{1}{2}\right) \dagger} D^{\left(\frac{1}{2}, 0\right)} \xi=D^{\left(0, \frac{1}{2}\right)} \xi, \tag{69}
\end{equation*}
$$

Dirac spinor and Dirac equation

Since any Lorentz 4-vector with the construction

$$
\begin{equation*}
U=\sigma_{\mu} u^{\mu}, \quad U_{c}=\sigma_{\mu}^{c} u^{\mu} \tag{70}
\end{equation*}
$$

transforms as $\left(\frac{1}{2}, \frac{1}{2}\right)$-representation and $\left(\frac{1}{2}, \frac{1}{2}\right)$-representation respectively. Therefore,

$$
\begin{align*}
\mathbf{P}_{c} \psi_{l} & =m_{0} c \psi_{r} \tag{0.71a}\\
\mathbf{P} \psi_{r} & =m_{0} c \psi_{l}
\end{align*}
$$

(0.71b)
hence we have

$$
\left(\begin{array}{cc}
0 & \mathbf{P}_{c} \tag{72}\\
\mathbf{P} & 0
\end{array}\right)\binom{\psi_{r}}{\psi_{l}}=m_{0} c\binom{\psi_{r}}{\psi_{l}}
$$

If we define the Dirac spinor ψ_{d} as $\psi_{r} \oplus \psi_{l}$, then

$$
\left(\begin{array}{cc}
0 & \mathbf{P}_{c} \tag{73}\\
\mathbf{P} & 0
\end{array}\right) \psi_{d}(x)=m_{0} c \psi_{d}(x)
$$

or

$$
\left[\left(\begin{array}{cc}
0 & i \boldsymbol{\sigma}_{c}^{\mu} \tag{74}\\
i \boldsymbol{\sigma}^{\mu} & 0
\end{array}\right) \partial_{\mu}+\frac{m_{0} c}{\hbar}\right] \psi_{d}(x)=0
$$

which can be cast into

$$
\begin{equation*}
\left(i \gamma^{\mu} \partial_{\mu}+\frac{m_{0} c}{\hbar}\right) \psi_{d}(x)=0 \tag{75}
\end{equation*}
$$

with γ^{μ} defined as

$$
\gamma^{\mu}=\left(\begin{array}{cc}
0 & \boldsymbol{\sigma}_{c}^{\mu} \\
\boldsymbol{\sigma}^{\mu} & 0
\end{array}\right) \quad \text { or } \quad \gamma^{0}=\left(\begin{array}{ll}
0 & \mathbf{1} \\
\mathbf{l} & 0
\end{array}\right), \quad \gamma^{i}=\left(\begin{array}{cc}
0 & -\boldsymbol{\sigma}^{i} \\
\boldsymbol{\sigma}^{i} & 0
\end{array}\right) .
$$

The covariant formulation of Dirac equation does not imply that

$$
\gamma_{\mu} \partial^{\mu}=\gamma_{\mu}^{\prime} \partial^{\prime \mu}
$$

In fact that we have the following proposition.

Proposition 4.

The gamma matrices γ^{μ} are universal in all Lorentz frame, namely the Dirac equation in another Lorentz frame, i.e. the \mathcal{O}^{\prime}-system always takes the same gamma matrices γ^{μ} used in \mathcal{O}-system. The equation in \mathcal{O}^{\prime}-system is expressed as

$$
\left(i \gamma^{\mu} \partial_{\mu}^{\prime}+\frac{m_{0} c}{h}\right) \psi_{d}^{\prime}\left(x^{\prime}\right)=0 .
$$

It can be proved by defining

$$
D(\vec{\theta}, \vec{\xi})=D^{\left(0, \frac{1}{2}\right)}(\vec{\theta}, \vec{\zeta}) \oplus D^{\left(\frac{1}{2}, 0\right)}(\vec{\theta}, \vec{\xi})
$$

and multiplying it upon the Dirac equation as follows

$$
\begin{equation*}
\left(i D \gamma^{\mu} D^{-1} \partial_{\mu}+\frac{m_{0} c}{\hbar}\right) D \psi_{d}(x)=0 . \tag{77}
\end{equation*}
$$

One can show that

$$
\begin{equation*}
D \gamma^{\mu} D^{-1}=\Lambda_{v}^{\mu} \gamma^{\nu} \tag{78}
\end{equation*}
$$

and the Dirac equation in the new Lorentz frame, i.e. \mathcal{O}^{\prime} frame reads as

$$
\begin{equation*}
\left(i \gamma^{\mu} \partial_{\mu}^{\prime}+\frac{m_{0} c}{\hbar}\right) \psi_{d}^{\prime}\left(x^{\prime}\right)=0, \tag{79}
\end{equation*}
$$

by identifying $\psi_{d}^{\prime}\left(x^{\prime}\right) \equiv D(\vec{\theta}, \vec{\xi}) \psi_{d}(x)=D(\vec{\theta}, \vec{\xi}) \psi_{d}\left(\Lambda^{-1} x^{\prime}\right)$.

Zero Mass Limit and Helicity of Weyl spinors

Last demonstration for zero mass limit in Dirac equation

$$
\left(\begin{array}{cc}
0 & \mathbf{P}_{c} \tag{80}\\
\mathbf{P} & 0
\end{array}\right) \psi_{d}(x)-m_{0} c \psi_{d}(x)=0
$$

For the limit that $m=0$, then

$$
\begin{equation*}
\mathbf{P}_{c} \psi_{l}=0, \quad \mathbf{P} \psi_{r}=0 \tag{81}
\end{equation*}
$$

and $p^{0}=|\vec{p}|$, which implies that

$$
\begin{equation*}
(\boldsymbol{\sigma} \cdot \hat{\mathbf{p}}) \psi_{r}=\psi_{r}, \quad(\boldsymbol{\sigma} \cdot \hat{\mathbf{p}}) \psi_{l}=-\psi_{l} \tag{82}
\end{equation*}
$$

