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Preface

During the past few years, after a couple of weeks of lecturing the
course of quantum mechanics that I offered at the Physics Department,
National Taiwan University, some students would usually come to ask
me as to what extent they had to refurbish their mathematical back-
ground in order to follow my lecture with ease and confidence. It was
hard for me to provide a decent and proper answer to the question, and
very often students would show reluctance to invest extra time on sub-
jects such as group theory or functional analysis when I advised them
to take some advanced mathematics courses. All these experiences that
I have encountered in my class eventually motivated me to write this
book.

The book is designed with the hope that it might be helpful to those
students I mentioned above. It could also serve as a complementary text
in quantum mechanics for students of inquiring minds who appreciate
the rigor and beauty of quantum theory.

Assistance received from many sources made the appearance of this
book possible. I wish to express here my great appreciation and grati-
tude to Dr. Yusuf Gürsey, who painstakingly went through the manu-
script and responded generously by giving very helpful suggestions and
comments, and made corrections line by line. I would also like to thank
Mr. Paul Black who provided me with cogent suggestions and criticism
of the manuscript, particularly in those sections on quantum uncer-
tainty. I am indebted as well to Mr. Chih Han Lin who, with immense
patience, compiled the whole text and drew all the figures from my sug-
gestions. All his hard work and attention resulted in the present form
of this book.

Taipei, Taiwan
March, 2011 Kow Lung Chang
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Chapter 1

Postulates and Principles of Quantum
Mechanics

As with many fields in physics, a precise and rigorous description
of a given subject requires the use of some mathematical tools. Take
Lagrange’s formulation of classical mechanics for instance, one needs the
basic knowledge of variational calculus in order to derive the equations
of motion for a system of particles in terms of generalized coordinates.
To formulate the postulates of quantum mechanics, it would also be
necessary to acquire some knowledge on vector space in general, and
Hilbert space in particular. It is in this chapter that we shall provide
the minimum but essential mathematical preparation that allows one to
perceive and understand the general framework of quantum theory and
to appreciate the rigorous derivation of the quantum principles.

1.1 Vector space

A vector space V is a set of elements, called vectors with the
following 2 operations:

• An operation of addition, which for each pair of vectors ψ and φ,
corresponds to a new vector ψ + φ ∈ V, called the sum of ψ and
φ.

• An operation of scalar multiplication, which for each vector ψ and
a number a, specifies a vector aψ, such that (assuming a, b are
numbers and ψ, φ and χ are vectors)

1
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2 Chapter 1

ψ + φ = φ+ ψ, (1.1a)

ψ + (φ+ χ) = (ψ + φ) + χ, (1.1b)

ψ + 0 = ψ, 0 is null vector, (1.1c)

a(ψ + φ) = aψ + aφ, (1.1d)

(a+ b)ψ = aψ + bψ, (1.1e)

a(bψ) = (ab)ψ, (1.1f)

1 · ψ = ψ, (1.1g)

0 · ψ = 0 , (1.1h)

where if a, b are real numbers, we call this vector space the real vector
space, and denote it by Vr. On the other way, complex vector space Vc
means a, b are complex numbers.

Example

We take n-dimensional Euclidean space, Rn-space, as an exmple. It
is a vector space with the vectors ψ and φ specified as ψ = (x1, x2, . . . ,
xi, . . . , xn) and φ = (y1, y2, . . . , yi, . . . , yn), where xi and yi (i = 1, 2, . . . ,
n) are all taken as real numbers. The sum of ψ and φ becomes (x1 +
y1, x2+y2, . . . , xi+yi, . . . , xn+yn) and aψ = (ax1, ax2, . . . , axi, . . . , axn).
If a and xi are taken as complex numbers, then ψ is a vector in Cn-space;
a n-dimensional complex vector space.

It is easily understood that a set of the continuous functions f(x)
for a 6 x 6 b forms a vector space, namely L2(a, b)-space.

Before leaving this section, we also introduce some terminologies
in the following subsections that will be frequently referred to in later
chapters.

1.1.1 Linearly dependent and linearly independent

Consider a set of m vectors {ψ1, ψ2, . . . , ψm}, and we construct the
linear combination of these m vectors as follows:

m∑
i=1

aiψi. (1.2)
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This linear combination of m vectors is of course a vector. It becomes
a null vector if and only if all the coefficient ai = 0 for i = 1, 2, . . . ,m,
then the set of m vectors {ψ1, ψ2, . . . , ψm} is called linearly independent.
If at least one of the coefficient al 6= 0 such that

∑m
i=1 aiψi = 0 , then

the set {ψ1, ψ2, . . . , ψm} is called linearly dependent.

1.1.2 Dimension and basis

The maximum number of linearly independent vectors in V is called
the dimension of V. Any n-linearly independent vectors in n-dimensional
vector space V form the basis of the vector space.

1.2 Inner product

An inner product, or sometimes called scalar product in vector
space, is a numerically valued function of the ordered pair of vectors ψ
and φ, denoted by (ψ, φ), and for a scalar a, such that

(ψ, φ+ χ) = (ψ, φ) + (ψ, χ), (1.3a)

(ψ, aφ) = a(ψ, φ), (1.3b)

(ψ, φ) = (φ, ψ)∗, (1.3c)

(ψ,ψ) > 0, (ψ,ψ) = 0 if and only if ψ is a null vector. (1.3d)

Two vectors ψ and φ are said to be orthogonal to each other if their
corresponding inner product vanishes, namely (ψ, φ) = 0.

For example, let us consider the vectors in Cn-space ψ = (x1, x2, . . . ,
xn) and φ = (y1, y2, . . . , yn) where xi and yi are complex numbers. The
inner product of ψ and φ written as

(ψ, φ) =
n∑
i=1

x∗i yi = x∗1y1 + x∗2y2 + · · ·+ x∗nyn. (1.4)

Consider the set of continuous function of f(x) where a 6 x 6 b.
An ordered pair of functions f(x) and g(x) define the inner product as

(f(x), g(x)) =
∫ b
a f(x)∗g(x)dx. This vector space is called L2(a, b)-space

when |f(x)|2 and |g(x)|2 = finite.
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1.2.1 Schwarz inequality

We are now in the position to prove the Schwarz inequality.

Let ψ and φ be any two vectors. The Schwarz inequality reads as

|(ψ, φ)| =
√

(ψ, φ)(φ, ψ) 6
√

(ψ,ψ)
√

(φ, φ). (1.5)

Proof

Since (ψ + αφ, ψ + αφ) > 0, where α = ξ + iη is a complex number.
Regard this inner product (ψ + αφ, ψ + αφ) = f(ξ, η) as a function of
two variables ξ and η. Then

f(ξ, η) = (ψ,ψ) + |α|2(φ, φ) + α(ψ, φ) + α∗(φ, ψ), (1.6)

which is positive definite. Let us look for the minimum of f(ξ, η) at
ξ0, η0 by solving

∂f(ξ, η)

∂ξ

∣∣∣∣∣
ξ0,η0

=
∂f(ξ, η)

∂η

∣∣∣∣∣
ξ0,η0

= 0, (1.7)

and we obtain

ξ0 =
1

2

(ψ, φ) + (φ, ψ)

(φ, φ)
, η0 = − i

2

(ψ, φ)− (φ, ψ)

(φ, φ)
. (1.8)

Therefore

f(ξ0, η0) = (ψ,ψ)− (ψ, φ)(φ, ψ)

(φ, φ)
> 0, (1.9)

that can be cast into the familiar expression of Schwarz inequality.

1.2.2 Gram-Schmidt orthogonalization process

The inner product we have been considering can be applied to the
orthogonalization of the basis in the n-dimensional vector space. Let
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{ψ1, ψ2, . . . , ψn} ∈ V be the set of n-linearly independent vectors.
Since (ψi, ψj) 6= 0 in general, we can construct a new set of vectors
{ψ′1, ψ′2, . . . , ψ′n} such that (ψ′i, ψ

′
j) = 0 for all i and j unless i = j,

namely ψ′i and ψ′j are orthogonal to each other for i 6= j by the follow-
ing procedure:

First take ψ′1 = ψ1 and construct ψ′2 = ψ2 + αψ′1. In order to force
ψ′2 to be orthogonal to ψ′1, we solve the α as to meet the condition
(ψ′2, ψ

′
1) = 0, i.e.

(ψ′2, ψ
′
1) = (ψ2, ψ

′
1) + α∗(ψ′1, ψ

′
1) = 0, (1.10)

and we obtain α = −(ψ2, ψ
′
1)∗/(ψ′1, ψ

′
1) = −(ψ′1, ψ2)/(ψ′1, ψ

′
1), hence

ψ′2 = ψ2 − ψ′1
(ψ′1, ψ2)

(ψ′1, ψ
′
1)
. (1.11)

The same procedure can be performed repeatedly to reach ψ′3 =
ψ3 + αψ′2 + βψ′1 which guarantees (ψ′3, ψ

′
1) = (ψ′3, ψ

′
2) = 0 with α =

−(ψ′2, ψ3)/(ψ′2, ψ
′
2) and β = −(ψ′1, ψ3)/(ψ′1, ψ

′
1). In general,

ψ′i = ψi − ψ′i−1

(ψ′i−1, ψi)

(ψ′i−1, ψ
′
i−1)

− ψ′i−2

(ψ′i−2, ψi)

(ψ′i−2, ψ
′
i−2)

− · · · − ψ′1
(ψ′1, ψi)

(ψ′1, ψ
′
1)
.

(1.12)

The set of orthogonal basis {ψ′1, ψ′2, . . . , ψ′n} can be normalized im-
mediately by multiplying the inverse square root of the corresponding
inner product, i.e.

ψ̃i =
ψ′i√

(ψ′i, ψ
′
i)
, (1.13)

and {ψ̃1, ψ̃2, . . . , ψ̃n} becomes the orthonormal set of the basis in the
vector space. From now on we shall take the basis to be orthonormal
without mentioning it particularly.
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6 Chapter 1

Example

Consider the following set of continuous functions in C(−∞,∞)

fn(x) = xn exp

(
−x

2

2

)
, n = 0, 1, . . . . (1.14)

We construct the new set of orthogonal vectors by applying the Gram-
Schmidt process and obtain:

f ′0(x) = f0(x) = exp
(
−x

2

)
, (1.15)

f ′1(x) = f1 −
f ′0(f ′0, f1)

(f ′0, f
′
0)

= f1(x) = x exp

(
x2

2

)
, (1.16)

f ′2(x) = f2 −
f ′1(f ′1, f2)

(f ′1, f
′
1)
− f ′0(f ′0, f2)

(f ′0, f
′
0)

=

(
x2 − 1

2

)
exp

(
−x

2

2

)
. (1.17)

Similarly we have f ′3(x) = (x3 − 3x/2) exp(−x2/2). The orthonormal
functions can be calculated according to

f̃n(x) =
f ′n(x)√

(f ′n(x), f ′n(x))
=

1√
2nn!
√
π

exp

(
−x

2

2

)
Hn(x), (1.18)

where Hn(x) are called Hermite polynomials. One also recognizes that
f̃n(x) are in fact, the eigenfunctions of the Schrödinger equation for
one-dimension harmonic oscillation.

1.3 Completeness and Hilbert space

Let us introduce some other terminologies in discussing Hilbert space.

1.3.1 Norm

A norm on a vector space is a non-negative real function such that,
if ψ, φ are vectors, the norm of ψ is written as ‖ψ‖, satisfying:
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1.3 Completeness and Hilbert space 7

‖ψ‖ > 0, ‖ψ‖ = 0 iff ψ is null vector, (1.19a)

‖aψ‖ = |a| · ‖ψ‖, (1.19b)

‖ψ + φ‖ 6 ‖ψ‖+ ‖φ‖. (1.19c)

Example

If f(x) ∈ C(a, b), namely if f(x) is a continuous function for a vari-
able that lies between a and b, the norm of f(x) can be defined either
as ‖f(x)‖ = Max{|f(x)|, a 6 x 6 b} or as the inner product of f(x), i.e.

‖f(x)‖2 = (f(x), f(x)) =

∫ b

a
|f(x)|2dx.

1.3.2 Cauchy sequence and convergent sequence

Consider an infinite dimensional vector space and denote the basis
by {φ1, φ2, φ3, . . .}. We construct the partial sum ψN =

∑
i aiφi, where

i runs from 1 to N , and obtain . . . , ψj , ψj+1, . . . , ψm, ψm+1, . . . , ψn, . . .
for increasing values in N that forms an infinite sequence. The sequence
is called a Cauchy sequence if

lim
n→∞

ψn = lim
m→∞

ψm,

or more precisely to put in terms of norm, i.e, lim
n,m→∞

‖ψn − ψm‖ = 0.

It is said that a vector ψm converges to ψ if

lim
m→∞

ψm = ψ, or lim
m→∞

‖ψm − ψ‖ = 0,

then {. . . , ψm−1, ψm, . . .} is called a convergent sequence.

It is easily concluded that every convergent sequence is a Cauchy
sequence. Yet it is not necessary true conversely. Namely a Cauchy
sequence is not always a convergent sequence.
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1.3.3 Complete vector space

A vector space, in which every Cauchy sequence of a vector ψm
converges to a limiting vector ψ, is called a complete vector space.

1.3.4 Hilbert space

A Hilbert space is a complete vector space with norm defined as the
inner product. A Hilbert space, finite dimensional or infinite dimen-
sional, is separable if its basis is countable.

1.4 Linear operator

A linear operator A on a vector space assigns to each vector ψ a
new vector, i.e. Aψ = ψ′ such that

A(ψ + φ) = Aψ + Aφ, A(αψ) = αAψ. (1.20)

Two operators A, B are said equal if Aψ = Bψ for all ψ in the
vector space.

For convenience in later discussion, we denote

• O: null operator such that Oψ = 0 for all ψ, and 0 is the null
vector.

• I: unit operator or identity operator such that Iψ = ψ.

The sum of the operators A and B is an operator, such that (A+B)ψ =
Aψ+Bψ. The product of operators A and B is again an operator that
one writes as A ·B or AB such that (AB)ψ = A(Bψ).

The order of the operators in the product matters greatly. It is
generally that AB 6= BA. The associative rule holds for the product of
the operators A(BC) = (AB)C.

1.4.1 Bounded operator

An operator A is called a bounded operator if there exists a
positive number b such that

‖Aψ‖ 6 b‖ψ‖, for any vector ψ in the vector space.
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The least upperbound (supremum) of A, namely the smalleast num-
ber of b for a given operator A and for any ψ in V, is denoted by

‖A‖ = sup

{
‖Aψ‖
‖ψ‖

, ψ 6= 0

}
, (1.21)

then ‖Aψ‖ 6 ‖A‖‖ψ‖.

We are now able to show readily that ‖A + B‖ 6 ‖A‖+ ‖B‖.

Proof

Let us denote ‖Aψ‖ 6 ‖A‖‖ψ‖ and ‖Bψ‖ 6 ‖B‖‖ψ‖. Then

‖A + B‖ = sup

{
‖(A + B)ψ‖
‖ψ‖

, ψ 6= 0

}
= sup

{
‖Aψ + Bψ‖
‖ψ‖

, ψ 6= 0

}

6 sup

{
‖Aψ‖
‖ψ‖

, ψ 6= 0

}
+ sup

{
‖Bψ‖
‖ψ‖

, ψ 6= 0

}
= ‖A‖+ ‖B‖.

Similarly, we have ‖AB‖ 6 ‖A‖‖B‖.

1.4.2 Continuous operator

Consider the convergent sequence {. . . , ψm, ψm+1, . . . , ψn, . . .} such
that lim

n→∞
‖ψn − ψ‖ = 0. If A is a bounded operator, then {. . . ,Aψm,

Aψm+1, . . . ,Aψn, . . .} is also a convergent sequence because

lim
n→∞

‖Aψn −Aψ‖ 6 ‖A‖ lim
n→∞

‖ψn − ψ‖ = 0.

We call operator A the continuous operator.
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1.4.3 Inverse operator

An operator A has an inverse operator if there exists BR such that
ABR = I, then we call operator BR the right inverse of A. Similarly
an operator BL such that the product operator BLA = I, then we call
operator BL the left inverse of A. In fact, the left inverse operator
is always equal to the right inverse operator for a given operator A,
because

BL = BLI = BL(ABR) = (BLA)BR = IBR = BR. (1.22)

The inverse operator of a given operator A is also unique. If opera-
tors B and C are all inverse operators of A, then C = CI = C(AB) =
(CA)B = B.

The implication of uniqueness of the inverse operator of operator A
allows us to write it in the form A−1, namely AA−1 = A−1A = I. It
is easily verified that (AB)−1 = B−1A−1.

1.4.4 Unitary operator

An operator U is unitary if ‖Uψ‖ = ‖ψ‖. A unitary operation
preserves the invariant of the inner product of any pair of vectors, i.e.
(Uψ,Uφ) = (ψ, φ). This can be proved as follows:

Let χ = ψ + φ and we have

(Uχ,Uχ) = (U(ψ + φ),U(ψ + φ))

= (Uψ,Uψ) + (Uψ,Uφ) + (Uφ,Uψ) + (Uφ,Uφ)

= ‖Uψ‖2 + ‖Uφ‖2 + 2<{(Uψ,Uφ)},

and on the other hand,

(Uχ,Uχ) = (ψ + φ, ψ + φ)

= (χ, χ) = (ψ,ψ) + (ψ, φ) + (φ, ψ) + (φ, φ)

= ‖ψ‖2 + ‖φ‖2 + 2<{(ψ, φ)}.

Since ‖Uψ‖ = ‖ψ‖, ‖Uφ‖ = ‖φ‖, we have <{(Uψ,Uφ)} = <{(ψ, φ)}.
Similarly if χ′ = ψ + iφ, we obtain (Uχ′,Uχ′) = (χ′, χ′), that implies
={(Uψ,Uφ)} = ={(ψ, φ)}, therefore (Uψ,Uφ) = (ψ, φ).
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1.4.5 Adjoint operator

Consider the inner product of (ψ,Aφ) where A is a given linear op-
erator of interest. This numerically scalar quantity certainly is a func-
tion of operator A and the pair of vectors ψ and φ, namely (ψ,Aφ) =
F (A, ψ, φ) is a scalar quantity.

Instead of performing the above inner product straightforwardly, we
shall obtain the very same scalar of (ψ,Aφ) by forming the following
inner product (A†ψ, φ) such that (ψ,Aφ) ≡ (A†ψ, φ). The operator A†

is called the adjoint operator of A. The following relations can be
easily established (proofs left to readers):

(A + B)† = A† + B†, (1.23a)

(αA)† = α∗A†, (1.23b)

(AB)† = B†A†, (1.23c)

(A†)† = A, (1.23d)

(A†)−1 = (A−1)†. (1.23e)

It can also be shown that A† is a bounded operator if A is bounded
and their norms are equal, i.e. ‖A‖ = ‖A†‖.

To prove the above equality, let us consider ‖A†ψ‖2 = (A†ψ,A†ψ),
namely

‖A†ψ‖2 = (A†ψ,A†ψ) = (AA†ψ,ψ) 6 ‖ψ‖‖AA†ψ‖ 6 ‖ψ‖‖A‖‖A†ψ‖,

therefore ‖A†ψ‖ 6 ‖A‖‖ψ‖, and we have ‖A†‖ 6 ‖A‖.
On the other hand, we have ‖Aψ‖2 = (Aψ,Aψ) = (A†Aψ,ψ) 6

‖ψ‖‖A†‖‖Aψ‖, which implies ‖A‖ 6 ‖A†‖. Therefore ‖A‖ = ‖A†‖ is
established.
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1.4.6 Hermitian operator

When an operator is self-adjoint, namely an adjoint operator A†

equals to operator A itself, i.e. A = A†, then we call A a Hermitian
operator.

1.4.7 Projection operator

Let H be a Hilbert space in which we consider a subspace M and
its orthogonal complement space M⊥ such that for each vector ψ in
H =M⊕M⊥ that are decomposed into unique vectors ψM in M and
ψM⊥ in M⊥ such that ψ = ψM + ψM⊥ , and (ψM, ψM⊥) = 0.

The projection operator PM when acting upon vector ψ onto a
subspace results in PMψ = ψM. It is obvious that PMψ = ψ if ψ ∈M
and PMψ = 0 if ψ ∈M⊥.

One can also be easily convinced that

(ψ,PMφ) = (ψ, φM) = (ψM + ψM⊥, φM) = (ψM, φM)

= (ψM, φ) = (PMψM, φ) = (PMψ, φ).

Therefore PM is also a Hermitian operator, i.e. P†M = PM.

Similarly we define PM⊥ such that PM⊥ψ = ψM⊥ and the sum of
PM and PM⊥ becomes an identity operator, i.e.

PM + PM⊥ = I.

1.4.8 Idempotent operator

The projection operator is an idempotent operator, namely
P2
M = PM because P2

Mψ = PMψM = PMψ.

1.5 The postulates of quantum mechanics

We start to formulate the postulates of quantum mechanics. We
shall treat the first three postulates in this chapter, and leave the 4th
postulate for the next chapter when we investigate the time evolution
of a quantum system.
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1.5 The postulates of quantum mechanics 13

1st postulate of quantum mechanics:

For every physical system, there exists an abstract entity, called
the state (or the state function or wave function that shall be
discussed later), which provides the information of the dynamical
quantities of the system; such as coordinates, momenta, energy,
angular momentum, charge or isospin, etc. All the states for a
given physical system are elements of a Hilbert space, i.e.

physical system ←→ Hilbert space H
physical state ←→ state vector ψ in H

Furthermore for each physical observable, such as the 3rd compo-
nent of the angular momentum or the total energy of the system
and so forth, there associates a unique Hermitian operator in the
Hilbert space, i.e.

physical (dynamical) corresponding

observable hermitean operator

total energy E ←→ H = H†

coordinate ~x ←→ X = X†

angular momentum ~l ←→ L = L†

The physical quantity measured in the system for the corresponding
observable is obtained by taking the inner product of the pair ψ and
Aψ, i.e.

〈A〉 = (ψ,Aψ), (1.24)

which is called the expectation value of dynamical quantity A for the
system in the state ψ, which is normalized, i.e. ‖ψ‖ = 1.

Since the action of operator A upon the vector ψ changes it into
another vector φ, which implies that the action of the measurement
of the dynamical quantity in a certain state usually would disturb the
physical system and the original state is changed into another state due
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to the external disturbance accompanying the measurement.

In particular, if an operator A such that Aψa = aψa, i.e. when A
acts upon a particular physical state ψa, the resultant state is the same
as the one before, then it is said that the physical state is prepared for
the measurement of the dynamical observable associated with the
operator A. We shall name:

• ψa : the state particularly prepared in the system for the mea-
surement of the dynamic quantity, called the eigenstate of the
operator A.

• a : the value of the measurement of the dynamical quantity in the
particular prepared state, called the eigenvalue of the operator
A.

We shall now explore some properties concerning the eigenvectors
and the eigenvalues through a few propositions.

Proposition 1.

The eigenvalues for a Hermitian operator are all real.

Let Aψa = aψa and A†ψa = aψa, and consider the inner product
〈A〉ψa = (ψa,Aψa) = (ψa, aψa) = a(ψa, ψa) = a. On the other hand, we
have 〈A〉ψa = (A†ψa, ψa) = (Aψa, ψa) = a∗(ψa, ψa) = a∗ which implies
a = a∗ if ψa is not a null vector.

Proposition 2.

Two eigenvectors of a Hermitian operator are orthogonal to each
other if the corresponding eigenvalues are unequal.

Let Aψa = aψa and Aψb = bψb where ψa 6= ψb, and since

(ψa,Aψb) = b(ψa, ψb) = (A†ψa, ψb) = a∗(ψa, ψb) = a(ψa, ψb),


