
Problem Set 1 (Due 9/28/2011) Phys 5041, Jason Payne

Ex. 1 Consider the following set of continuous functions, {fn(x) = xn | x ∈ [−1, 1]}n∈N,
which span L2(−1, 1). Explicitly determine the first three orthonormal functions
by using the Gram-Schmidt orthonormalization process. The results remind you
of which functions?

Solution. To begin we find the first three orthogonal basis vectors by following
the procedure outlined on page 5:

f ′0(x):
f ′0(x) = f0(x) = 1

f ′1(x):

f ′1(x) = f1(x)− f ′0(x)
(f ′0(x), f1(x))

(f ′0(x), f
′
0(x))

= x− (1, x)

(1, 1)

= x−
R 1
−1 x dxR 1
−1 1 dx

= x−
x2

2

���1
−1

x|1−1
= x−

1
2
− 1

2

1− (−1)
= x

f ′2(x):

f ′2(x) = f2(x)− f ′1(x)
(f ′1(x), f2(x))

(f ′1(x), f
′
1(x))

− f ′0(x)
(f ′0(x), f2(x))

(f ′0(x), f
′
0(x))

= x2 − x · (x, x
2)

(x, x)
− (1, x2)

(1, 1)
= x2 − x ·

R 1
−1 x

3 dxR 1
−1 x

2 dx
−
R 1
−1 x

2 dxR 1
−1 1 dx

= x2 − x ·
x4

4

���1
−1

x3

3

���1
−1

−
x3

3

���1
−1

x|1−1
= x2 − x ·

1
4
− 1

4
1
3
−
�
−1

3

� − 1
3
−
�
−1

3

�
1− (−1)

= x2 − 1

3

From here we normalize the basis by dividing by the magnitude:
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These are proportional to the Legendre polynomials which occur, for example,
when solving the Laplace equation for the Newtonian potential.

Ex. 2 Prove the Minkowski inequality holds in Hilbert space, i.e.

‖ψ + φ‖ ≤ ‖ψ‖+ ‖φ‖.

[Hint: Compute the square of each side]

Proof. As the hint indicates, we begin by computing

(‖ψ‖+ ‖φ‖)2 = ‖ψ‖2 + 2‖ψ‖‖φ‖+ ‖φ‖2

and
‖ψ + φ‖2 = (ψ + φ, ψ + φ) = (ψ + φ, ψ) + (ψ + φ, φ)

= (ψ, ψ) + (φ, ψ) + (ψ, φ) + (φ, φ) = ‖ψ‖2 + (ψ, φ)∗ + (ψ, φ) + ‖φ‖2

= ‖ψ‖2 + 2Re(ψ, φ) + ‖φ‖2

Thus, by applying the Schwarz inequality (1.2.1) we have:

‖ψ + φ‖2 = ‖ψ‖2 + 2Re(ψ, φ) + ‖φ‖2 ≤ ‖ψ‖2 + 2‖ψ‖‖φ‖+ ‖φ‖2 = (‖ψ‖+ ‖φ‖)2

By taking square roots on both sides, and using the fact that f(x) = x2 is monoton-
ically increasing on (0,∞), we have the desired result.

Ex. 3 Prove the parallelogram law holds in Hilbert space, i.e.

‖ψ + φ‖2 + ‖ψ − φ‖2 = 2(‖ψ‖2 + ‖φ‖2)

Proof. Recall from the proof of Ex. 2 that we computed

‖ψ + φ‖2 = ‖ψ‖2 + 2Re(ψ, φ) + ‖φ‖2.

Similarly, we have that

‖ψ − φ‖2 = ‖ψ‖2 − 2Re(ψ, φ) + ‖φ‖2.

By adding these two equations we have

‖ψ + φ‖2 + ‖ψ − φ‖2 = (‖ψ‖2 +������
2Re(ψ, φ) + ‖φ‖2) + (‖ψ‖2 −������

2Re(ψ, φ) + ‖φ‖2)

= 2‖ψ‖2 + 2‖φ‖2 = 2(‖ψ‖2 + ‖φ‖2),
as desired.
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Ex. 4 Prove that every finite-dimensional vector space is complete.
[Hint: Recall that both the real and complex numbers are complete]

Proof. Let X be a vector space of dimension n < ∞. Denote the basis of X by
{φ1, · · · , φn} and the basis of Rn by {e1, · · · , en}. Consider the canonical map
CanX : X → Rn, defined by

CanX

 
nX

i=1

aiφi

!
=

nX
i=1

aiei.

We will make free use of two standard results about CanX - it is an isomorphism
of vector spaces, as well as a homeomorphism between the underlying norm-
induced topologies. Given a Cauchy sequence {bi} in X we have that

lim
i→∞

bi = lim
i→∞

Can-1
X (ai) = Can-1

X ( limi→∞
ai) = Can-1

X (a) = b,

where the limit a of {ai} exists since Rn is complete. Therefore every Cauchy se-
quence in X converges, i.e. X is complete.

Ex. 5 By using the definition of the inner product in V , prove that (ψ, 0) = (0, ψ) = 0.

Proof. We have from 1.3a that

(ψ, 0) = (ψ, 0 + 0) = (ψ, 0) + (ψ, 0) = 2(ψ, 0).

Subtracting (ψ, 0) from both sides yields

0 = (ψ, 0).

The other equality follows from the above and 1.3c, since we have

(0, ψ) = (ψ, 0)∗ = 0∗ = 0.

Ex. 6 Show that both ‖f‖1 =
È
(f(x), f(x)) and ‖f‖2 = maxa≤x≤b |f(x)| define a norm on

L2(a, b).

Proof. First we will verify 1.19a-c for ‖ · ‖1:

1.19a: Since |f(x)|2 > 0 we have that

(f(x), f(x)) =
Z b

a
f ∗(x)f(x) dx =

Z b

a
|f(x)|2 dx > 0;

and therefore, since
√
· : (0,∞)→ (0,∞), ‖f(x)‖1 =

È
(f(x), f(x)) > 0.
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1.19b: This follows from a simple calculation:

‖af(x)‖1 =
È
(af(x), af(x)) =

�Z b

a
|af(x)|2 dx

�1/2

=
�
a2
Z b

a
|f(x)|2 dx

�1/2

= (a2)1/2
�Z b

a
|f(x)|2 dx

�1/2

= |a| · ‖f(x)‖1,

where the third equality follows from the fact that | · | is a norm on R.

1.19c: This follows from the argument given in Ex. 2, but we will reproduce it here
in this context. Given f, g ∈ L2(a, b) we have that

(‖f(x)‖1 + ‖g(x)‖1)2 = ‖f(x)‖21 + 2‖f(x)‖1‖g(x)‖1 + ‖g(x)‖21

and

‖f(x) + g(x)‖21 = (f(x) + g(x), f(x) + g(x)) =
Z b

a
(f(x) + g(x))∗(f(x) + g(x)) dx

=
Z b

a
(f(x)∗+g(x)∗)(f(x)+g(x)) dx =

Z b

a
(f(x)∗f(x)+f(x)∗g(x)+g(x)∗f(x)+g(x)g(x)∗) dx

=
Z b

a
f(x)∗f(x) dx+

Z b

a
[f(x)∗g(x) + (f(x)∗g(x))∗] dx+

Z b

a
g(x)g(x)∗ dx

= (f(x), f(x))2 + 2
Z b

a
Re(f(x)∗g(x)) dx+ (g(x), g(x))2

= ‖f(x)‖21 + 2Re(f(x), g(x)) + ‖g(x)‖21.

Thus, by applying the Schwarz inequality (1.2.1) we have:

‖f(x) + g(x)‖21 = ‖f(x)‖21 + 2Re(f(x), g(x)) + ‖g(x)‖21

≤ ‖f(x)‖21 + 2‖f(x)‖1‖g(x)‖1 + ‖g(x)‖21 = (‖f(x)‖1 + ‖g(x)‖1)2

By taking square roots on both sides, and using the fact that f(x) = x2 is
monotonically increasing on (0,∞), we have the established that ‖·‖1 satisfies
the triangle inequality; thus it is a norm on L2(a, b).

Next we will verify 1.19a-c for ‖ · ‖2:

1.19a: Since |f(x)| ≥ 0 it is vacuously true that maxa≤x≤b |f(x)| ≥ 0. Furthermore,
since | · | is a norm on R we have that

‖f‖2 = max
a≤x≤b

|f(x)| = 0 ⇔ |f(x)| = 0, ∀x ∈ [a, b] ⇔ f(x) ≡ 0 on [a, b].
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1.19b:

‖αf(x)‖2 = max
a≤x≤b

|αf(x)| = max
a≤x≤b

|α||f(x)| = |α| · max
a≤x≤b

|f(x)| = |α|‖f(x)‖2.

1.19c: To prove the triangle inequality let x0 ∈ [a, b] be such that |f(x0) + g(x0)| =
maxa≤x≤b |f(x) + g(x)|. Then by definition of the maximum we have that for
every x ∈ [a, b]

|f(x) + g(x)| ≤ |f(x0) + g(x0)| ≤ |f(x0)|+ |g(x0)| ≤ max
a≤x≤b

|f(x)|+ max
a≤x≤b

|g(x)|,

where the second inequality is an application of the triangle inequality for | · |,
and the third inequality is by the definition of max(·). Since this is true for
every x ∈ [a, b] we have that

max
a≤x≤b

|f(x) + g(x)| ≤ max
a≤x≤b

|f(x)|+ max
a≤x≤b

|g(x)|.
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