Ex. 1 Consider the following set of continuous functions, $\left\{f_{n}(x)=x^{n} \mid x \in[-1,1]\right\}_{n \in \mathbb{N}}$, which span $\mathcal{L}^{2}(-1,1)$. Explicitly determine the first three orthonormal functions by using the Gram-Schmidt orthonormalization process. The results remind you of which functions?

Solution. To begin we find the first three orthogonal basis vectors by following the procedure outlined on page 5 :

$$
\underline{f_{0}^{\prime}(x)}:
$$

$$
f_{0}^{\prime}(x)=f_{0}(x)=1
$$

$\underline{f_{1}^{\prime}(x):}$

$$
\begin{aligned}
& f_{1}^{\prime}(x)=f_{1}(x)-f_{0}^{\prime}(x) \frac{\left(f_{0}^{\prime}(x), f_{1}(x)\right)}{\left(f_{0}^{\prime}(x), f_{0}^{\prime}(x)\right)}=x-\frac{(1, x)}{(1,1)} \\
& =x-\frac{\int_{-1}^{1} x d x}{\int_{-1}^{1} 1 d x}=x-\frac{\left.\frac{x^{2}}{2}\right|_{-1} ^{1}}{\left.x\right|_{-1} ^{1}}=x-\frac{\frac{1}{2}-\frac{1}{2}}{1-(-1)}=x
\end{aligned}
$$

$\underline{f_{2}^{\prime}(x):}$

$$
\begin{gathered}
f_{2}^{\prime}(x)=f_{2}(x)-f_{1}^{\prime}(x) \frac{\left(f_{1}^{\prime}(x), f_{2}(x)\right)}{\left(f_{1}^{\prime}(x), f_{1}^{\prime}(x)\right)}-f_{0}^{\prime}(x) \frac{\left(f_{0}^{\prime}(x), f_{2}(x)\right)}{\left(f_{0}^{\prime}(x), f_{0}^{\prime}(x)\right)} \\
=x^{2}-x \cdot \frac{\left(x, x^{2}\right)}{(x, x)}-\frac{\left(1, x^{2}\right)}{(1,1)}=x^{2}-x \cdot \frac{\int_{-1}^{1} x^{3} d x}{\int_{-1}^{1} x^{2} d x}-\frac{\int_{-1}^{1} x^{2} d x}{\int_{-1}^{1} 1 d x} \\
=x^{2}-x \cdot \frac{\left.\frac{x^{4}}{4}\right|_{-1} ^{1}}{\left.\frac{x^{3}}{3}\right|_{-1} ^{1}}-\frac{\left.\frac{x^{3}}{3}\right|_{-1} ^{1}}{\left.x\right|_{-1} ^{1}}=x^{2}-x \cdot \frac{\frac{1}{4}-\frac{1}{4}}{\frac{1}{3}-\left(-\frac{1}{3}\right)}-\frac{\frac{1}{3}-\left(-\frac{1}{3}\right)}{1-(-1)}=x^{2}-\frac{1}{3}
\end{gathered}
$$

From here we normalize the basis by dividing by the magnitude:

$$
\begin{gathered}
\widetilde{f_{0}}(x)=\frac{f_{0}^{\prime}(x)}{\sqrt{\left(f_{0}^{\prime}(x), f_{0}^{\prime}(x)\right)}}=\frac{1}{\sqrt{\int_{-1}^{1} 1 d x}}=\frac{1}{\sqrt{\left.x\right|_{-1} ^{1}}}=\frac{1}{\sqrt{2}} \\
\widetilde{f_{1}}(x)=\frac{f_{1}^{\prime}(x)}{\sqrt{\left(f_{1}^{\prime}(x), f_{1}^{\prime}(x)\right)}}=\frac{x}{\sqrt{\int_{-1}^{1} x^{2} d x}}=\frac{x}{\sqrt{x^{3} /\left.3\right|_{-1} ^{1}}}=x \sqrt{\frac{3}{2}} \\
\widetilde{f_{2}}(x)=\frac{f_{2}^{\prime}(x)}{\sqrt{\left(f_{2}^{\prime}(x), f_{2}^{\prime}(x)\right)}}=\frac{x^{2}-\frac{1}{3}}{\sqrt{\int_{-1}^{1}\left(x^{2}-\frac{1}{3}\right)^{2} d x}}=\frac{x^{2}-\frac{1}{3}}{\sqrt{\int_{-1}^{1}\left(x^{4}-\frac{2}{3} x^{2}+\frac{1}{9}\right) d x}} \\
=\frac{x^{2}-\frac{1}{3}}{\sqrt{\left.\left(\frac{x^{5}}{5}-\frac{2}{9} x^{3}+\frac{1}{9} x\right)\right|_{-1} ^{1}}}=\frac{\frac{3 x^{2}-1}{3}}{\sqrt{\left(\frac{1}{5}-\frac{2}{9}+\frac{1}{9}\right)-\left(-\frac{1}{5}+\frac{2}{9}-\frac{1}{9}\right)}}=\left(3 x^{2}-1\right) \sqrt{\frac{5}{8}}
\end{gathered}
$$

These are proportional to the Legendre polynomials which occur, for example, when solving the Laplace equation for the Newtonian potential.

Ex. 2 Prove the Minkowski inequality holds in Hilbert space, i.e.

$$
\|\psi+\phi\| \leq\|\psi\|+\|\phi\| .
$$

[Hint: Compute the square of each side]
Proof. As the hint indicates, we begin by computing

$$
(\|\psi\|+\|\phi\|)^{2}=\|\psi\|^{2}+2\|\psi\|\|\phi\|+\|\phi\|^{2}
$$

and

$$
\begin{gathered}
\|\psi+\phi\|^{2}=(\psi+\phi, \psi+\phi)=(\psi+\phi, \psi)+(\psi+\phi, \phi) \\
=(\psi, \psi)+(\phi, \psi)+(\psi, \phi)+(\phi, \phi)=\|\psi\|^{2}+(\psi, \phi)^{*}+(\psi, \phi)+\|\phi\|^{2} \\
=\|\psi\|^{2}+2 \operatorname{Re}(\psi, \phi)+\|\phi\|^{2}
\end{gathered}
$$

Thus, by applying the Schwarz inequality (1.2.1) we have:

$$
\|\psi+\phi\|^{2}=\|\psi\|^{2}+2 \operatorname{Re}(\psi, \phi)+\|\phi\|^{2} \leq\|\psi\|^{2}+2\|\psi\|\|\phi\|+\|\phi\|^{2}=(\|\psi\|+\|\phi\|)^{2}
$$

By taking square roots on both sides, and using the fact that $f(x)=x^{2}$ is monotonically increasing on $(0, \infty)$, we have the desired result.

Ex. 3 Prove the parallelogram law holds in Hilbert space, i.e.

$$
\|\psi+\phi\|^{2}+\|\psi-\phi\|^{2}=2\left(\|\psi\|^{2}+\|\phi\|^{2}\right)
$$

Proof. Recall from the proof of Ex. 2 that we computed

$$
\|\psi+\phi\|^{2}=\|\psi\|^{2}+2 \operatorname{Re}(\psi, \phi)+\|\phi\|^{2}
$$

Similarly, we have that

$$
\|\psi-\phi\|^{2}=\|\psi\|^{2}-2 \operatorname{Re}(\psi, \phi)+\|\phi\|^{2} .
$$

By adding these two equations we have

$$
\begin{aligned}
\|\psi+\phi\|^{2}+\|\psi-\phi\|^{2} & =\left(\|\psi\|^{2}+2 \operatorname{Re}(\phi, \phi)+\|\phi\|^{2}\right)+\left(\|\psi\|^{2}-2 \operatorname{Re}(\phi, \phi)+\|\phi\|^{2}\right) \\
& =2\|\psi\|^{2}+2\|\phi\|^{2}=2\left(\|\psi\|^{2}+\|\phi\|^{2}\right)
\end{aligned}
$$

as desired.

Ex. 4 Prove that every finite-dimensional vector space is complete.
[Hint: Recall that both the real and complex numbers are complete]
Proof. Let \mathcal{X} be a vector space of dimension $n<\infty$. Denote the basis of \mathcal{X} by $\left\{\phi_{1}, \cdots, \phi_{n}\right\}$ and the basis of \mathbb{R}^{n} by $\left\{\mathbf{e}_{1}, \cdots, \mathbf{e}_{n}\right\}$. Consider the canonical map $\operatorname{Can}_{\mathcal{X}}: \mathcal{X} \rightarrow \mathbb{R}^{n}$, defined by

$$
\operatorname{Can}_{\mathcal{X}}\left(\sum_{i=1}^{n} a_{i} \phi_{i}\right)=\sum_{i=1}^{n} a_{i} \mathbf{e}_{i} .
$$

We will make free use of two standard results about $\operatorname{Can}_{\mathcal{X}^{-}}$it is an isomorphism of vector spaces, as well as a homeomorphism between the underlying norminduced topologies. Given a Cauchy sequence $\left\{b_{i}\right\}$ in \mathcal{X} we have that

$$
\lim _{i \rightarrow \infty} b_{i}=\lim _{i \rightarrow \infty} \operatorname{Can}_{\mathcal{X}}^{-1}\left(a_{i}\right)=\operatorname{Can}_{\mathcal{X}}^{-1}\left(\lim _{i \rightarrow \infty} a_{i}\right)=\operatorname{Can}_{\mathcal{X}}^{-1}(a)=b,
$$

where the limit a of $\left\{a_{i}\right\}$ exists since \mathbb{R}^{n} is complete. Therefore every Cauchy sequence in \mathcal{X} converges, i.e. \mathcal{X} is complete.

Ex. 5 By using the definition of the inner product in \mathcal{V}, prove that $(\psi, 0)=(0, \psi)=0$.
Proof. We have from 1.3a that

$$
(\psi, 0)=(\psi, 0+0)=(\psi, 0)+(\psi, 0)=2(\psi, 0) .
$$

Subtracting $(\psi, 0)$ from both sides yields

$$
0=(\psi, 0)
$$

The other equality follows from the above and 1.3 c , since we have

$$
(0, \psi)=(\psi, 0)^{*}=0^{*}=0 .
$$

Ex. 6 Show that both $\|f\|_{1}=\sqrt{(f(x), f(x))}$ and $\|f\|_{2}=\max _{a \leq x \leq b}|f(x)|$ define a norm on $\mathcal{L}^{2}(a, b)$.

Proof. First we will verify 1.19 a-c for $\|\cdot\|_{1}$:
1.19a: Since $|f(x)|^{2}>0$ we have that

$$
(f(x), f(x))=\int_{a}^{b} f^{*}(x) f(x) d x=\int_{a}^{b}|f(x)|^{2} d x>0
$$

and therefore, since $\sqrt{\cdot}:(0, \infty) \rightarrow(0, \infty),\|f(x)\|_{1}=\sqrt{(f(x), f(x))}>0$.
1.19b: This follows from a simple calculation:

$$
\begin{gathered}
\|a f(x)\|_{1}=\sqrt{(a f(x), a f(x))}=\left(\int_{a}^{b}|a f(x)|^{2} d x\right)^{1 / 2}=\left(a^{2} \int_{a}^{b}|f(x)|^{2} d x\right)^{1 / 2} \\
=\left(a^{2}\right)^{1 / 2}\left(\int_{a}^{b}|f(x)|^{2} d x\right)^{1 / 2}=|a| \cdot\|f(x)\|_{1}
\end{gathered}
$$

where the third equality follows from the fact that $|\cdot|$ is a norm on \mathbb{R}.
1.19c: This follows from the argument given in Ex. 2, but we will reproduce it here in this context. Given $f, g \in \mathcal{L}^{2}(a, b)$ we have that

$$
\left(\|f(x)\|_{1}+\|g(x)\|_{1}\right)^{2}=\|f(x)\|_{1}^{2}+2\|f(x)\|_{1}\|g(x)\|_{1}+\|g(x)\|_{1}^{2}
$$

and

$$
\begin{gathered}
\|f(x)+g(x)\|_{1}^{2}=(f(x)+g(x), f(x)+g(x))=\int_{a}^{b}(f(x)+g(x))^{*}(f(x)+g(x)) d x \\
=\int_{a}^{b}\left(f(x)^{*}+g(x)^{*}\right)(f(x)+g(x)) d x=\int_{a}^{b}\left(f(x)^{*} f(x)+f(x)^{*} g(x)+g(x)^{*} f(x)+g(x) g(x)^{*}\right) d x \\
=\int_{a}^{b} f(x)^{*} f(x) d x+\int_{a}^{b}\left[f(x)^{*} g(x)+\left(f(x)^{*} g(x)\right)^{*}\right] d x+\int_{a}^{b} g(x) g(x)^{*} d x \\
=(f(x), f(x))^{2}+2 \int_{a}^{b} \operatorname{Re}\left(f(x)^{*} g(x)\right) d x+(g(x), g(x))^{2} \\
=\|f(x)\|_{1}^{2}+2 \operatorname{Re}(f(x), g(x))+\|g(x)\|_{1}^{2} .
\end{gathered}
$$

Thus, by applying the Schwarz inequality (1.2.1) we have:

$$
\begin{gathered}
\|f(x)+g(x)\|_{1}^{2}=\|f(x)\|_{1}^{2}+2 \operatorname{Re}(f(x), g(x))+\|g(x)\|_{1}^{2} \\
\leq\|f(x)\|_{1}^{2}+2\|f(x)\|_{1}\|g(x)\|_{1}+\|g(x)\|_{1}^{2}=\left(\|f(x)\|_{1}+\|g(x)\|_{1}\right)^{2}
\end{gathered}
$$

By taking square roots on both sides, and using the fact that $f(x)=x^{2}$ is monotonically increasing on $(0, \infty)$, we have the established that $\|\cdot\|_{1}$ satisfies the triangle inequality; thus it is a norm on $\mathcal{L}^{2}(a, b)$.

Next we will verify $1.19 \mathrm{a}-\mathrm{c}$ for $\|\cdot\|_{2}$:
1.19a: Since $|f(x)| \geq 0$ it is vacuously true that $\max _{a \leq x \leq b}|f(x)| \geq 0$. Furthermore, since $|\cdot|$ is a norm on \mathbb{R} we have that
$\|f\|_{2}=\max _{a \leq x \leq b}|f(x)|=0 \quad \Leftrightarrow \quad|f(x)|=0, \forall x \in[a, b] \quad \Leftrightarrow \quad f(x) \equiv 0$ on $[a, b]$.
1.19b:

$$
\|\alpha f(x)\|_{2}=\max _{a \leq x \leq b}|\alpha f(x)|=\max _{a \leq x \leq b}|\alpha||f(x)|=|\alpha| \cdot \max _{a \leq x \leq b}|f(x)|=|\alpha|\|f(x)\|_{2} .
$$

1.19c: To prove the triangle inequality let $x_{0} \in[a, b]$ be such that $\left|f\left(x_{0}\right)+g\left(x_{0}\right)\right|=$ $\max _{a \leq x \leq b}|f(x)+g(x)|$. Then by definition of the maximum we have that for every $x \in[a, b]$

$$
|f(x)+g(x)| \leq\left|f\left(x_{0}\right)+g\left(x_{0}\right)\right| \leq\left|f\left(x_{0}\right)\right|+\left|g\left(x_{0}\right)\right| \leq \max _{a \leq x \leq b}|f(x)|+\max _{a \leq x \leq b}|g(x)|,
$$

where the second inequality is an application of the triangle inequality for $|\cdot|$, and the third inequality is by the definition of $\max (\cdot)$. Since this is true for every $x \in[a, b]$ we have that

$$
\max _{a \leq x \leq b}|f(x)+g(x)| \leq \max _{a \leq x \leq b}|f(x)|+\max _{a \leq x \leq b}|g(x)| .
$$

