Problem Set1 (Due 9/28/2011) Phys 5041, Jason Payne

Consider the following set of continuous functions, {f,(z) = 2" | z € [-1, 1] }nen,
which span £?(—1,1). Explicitly determine the first three orthonormal functions
by using the Gram-Schmidt orthonormalization process. The results remind you
of which functions?

Solution. To begin we find the first three orthogonal basis vectors by following
the procedure outlined on page 5:
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From here we normalize the basis by dividing by the magnitude:
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These are proportional to the Legendre polynomials which occur, for example,
when solving the Laplace equation for the Newtonian potential.

Prove the Minkowski inequality holds in Hilbert space, i.e.
1+ oll < 9l + ]l

[Hint: Compute the square of each side]

Proof. As the hint indicates, we begin by computing
(ol + 181)* = 11 + 2l ¢l + Nl

and

[+ 0l> = (0 + b, 00+ ¢) = (¥ + 6,0) + (Y + ¢, )
= (1, 0) + (,9) + (¥, ) + (¢, ¢) = |U]* + (¥, 9)* + (¢, 0) + [ 4]
= [[9]* + 2Re(, 0) + llo]1?
Thus, by applying the Schwarz inequality (1.2.1) we have:
[0+ ol = [l + 2Re(¥, ¢) + [l9]1* < [[wlI” + 2[[¢lllIgll + [¢]1> = (1]l + lll)?

By taking square roots on both sides, and using the fact that f(z) = 2% is monoton-
ically increasing on (0, c0), we have the desired result. O

Prove the parallelogram law holds in Hilbert space, i.e.
¥+ ol” + llv — ol = 2([lwlI* + [|6]1%)

Proof. Recall from the proof of Ex. 2 that we computed
[+ ¢lI* = ll¥]* + 2Re(¥, 6) + [I6]*

Similarly, we have that
I = 6l” = I¥l* — 2Re(, ¢) + 1 4]*
By adding these two equations we have
1o+ ol* + v = olI* = (011" + 2Ret@) + lI81I*) + (I¥]° — 2Refer3) + [14]°)
= 2[[91* + 2lI81* = 211" + [|81I*),

as desired. n
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Prove that every finite-dimensional vector space is complete.
[Hint: Recall that both the real and complex numbers are complete]

Proof. Let X be a vector space of dimension n < oo. Denote the basis of X' by
{¢1, - ,¢n} and the basis of R" by {e;,--- ,e,}. Consider the canonical map
Cany : X — R", defined by

Can;( <Z az¢z> = Z a;e;.
i=1 =1

We will make free use of two standard results about Cany- it is an isomorphism
of vector spaces, as well as a homeomorphism between the underlying norm-
induced topologies. Given a Cauchy sequence {b;} in X we have that

lim b; = lim Canj(a;) = Cany(lim a;) = Cany(a) = b,

1—00 11— 00 1—00

where the limit a of {a;} exists since R" is complete. Therefore every Cauchy se-
quence in X converges, i.e. X’ is complete. O

By using the definition of the inner product in V, prove that (¢, 0) = (0,¢) = 0.

Proof. We have from 1.3a that

(1,0) = (¥,0+0) = (¥,0) + (¥,0) = 2(,0).
Subtracting (¢, 0) from both sides yields

0= (¢,0).

The other equality follows from the above and 1.3c, since we have

(0,¢) = (¥,0)" = 0" = 0.
]

Show that both || f||; = \/(f(z), f(z)) and || f||2 = maxe<s<; | f(2)| define a norm on
L2(a,b).

Proof. First we will verify 1.19a-c for || - |;:

1.19a: Since |f(z)* > 0 we have that

(F@), f@) = [ 7@ @) de= [ 17@)P de> o,

and therefore, since /- : (0,00) — (0,00), ||f(z)]1 = /(f(z), f(z)) > 0.
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1.19b: This follows from a simple calculation:

1/2

Jof @)l = iaf@).af@) = ([ las @l as) " = (o [ 1) i)

b 1/2
— @) ([ 1@ d) " =lal- /@)
where the third equality follows from the fact that | - | is a norm on R.

1.19c: This follows from the argument given in Ex. 2, but we will reproduce it here
in this context. Given f, g € £*(a,b) we have that

(Lf @)l + lg@)lh)* = [f @) + 21 @ allg@) s + lg(@)]¥

and
1f () +g(2) |} = (f(2) +g(2), f(x) + g(x)) = /b(f(x) +9(@))"(f(z) + g(x)) dx

a

b

= [ 9@y @) g dr = [[(F@) Fa)+f) o) role) ) ro(e)g(r)) dr

a

= [ty s e+ [0 o@) + (@) g@)] de+ [ gl do

= (@), J(@))? +2 [ Re(f(x)'g(a)) dx + (gla), o(x))

= [IF (=)} + 2Re(f(x), g(x)) + ()]}

Thus, by applying the Schwarz inequality (1.2.1) we have:
1 (x) + g(@)IIF = If ()7 + 2Re(f (x), g()) + lg(2)]3

< IF@)IE +20f@lillg@)l + lg@)1F = (1f @)l + lg(@)lh)*

By taking square roots on both sides, and using the fact that f(z) = 22 is
monotonically increasing on (0, c0), we have the established that || - ||; satisfies
the triangle inequality; thus it is a norm on £?(a, b).

Next we will verify 1.19a-c for || - |2

1.19a: Since |f(x)| > 0 it is vacuously true that max,<,<;|f(x)| > 0. Furthermore,
since | - | is a norm on R we have that

|fll2 = max |f(z)] =0 < |f(x)]=0, Ve €la,b] < f(x)=0 on [a,b].

a<x<b
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1.19b:

Jaf @)ll2 = max |of(@)] = max lallf()] = o] - max |£(x)| = lal|£(z)]]>

1.19c: To prove the triangle inequality let zy € [a, b] be such that |f(zq) + g(xo)| =
max,<,<p | f(2) + g(x)|. Then by definition of the maximum we have that for
every z € [a, b

7(@) + 9(@)] < |F(xo) + g(x)] < |f(xo)| + lglro)| < max |£(x)| + ma [g(x)].
where the second inequality is an application of the triangle inequality for |- |,
and the third inequality is by the definition of max(-). Since this is true for
every x € [a,b] we have that

max |£(2) + g(@)] < max |£(2)] + ma o(x)]

a<z<b a<x<b



