
Problem Set 6 (Due 11/02/2011) Phys 5041, Jason Payne

Ex. 1 Find the quantum uncertainty ∆ξ∆Pξ in the n particle state (or the n-th excited
state) of the one-dimensional oscillator.

Solution.

This follows from a few short calculations. By definition we have that

(∆ ξ)2 =
¬
ξ2
¶
− 〈ξ〉2 and (∆Pξ)

2 =
¬
P 2
ξ

¶
− 〈Pξ〉2 .

Using (2.57), (2.58), (2.65), and (2.66) can calculate the relevant quantities as fol-
lows:

〈ξ〉 :

〈ξ〉 =
1√
2

(〈n| a |n〉+ 〈n| a† |n〉)

=
1√
2

(((((
((((√

n 〈n |n− 1〉 +((((
(((

(((√
n+ 1 〈n |n+ 1〉) = 0;

〈ξ2〉 : ¬
ξ2
¶

=
1

2
(〈n| a2 |n〉+ 〈n| aa† |n〉+ 〈n| a†a |n〉+ 〈n| (a†)2 |n〉)

=
1

2
(
√
n 〈n| a |n− 1〉+

√
n+ 1 〈n| a |n+ 1〉+

√
n 〈n| a† |n− 1〉+

√
n+ 1 〈n| a† |n+ 1〉)

=
1

2
(((((

(((
((((È

n(n− 1) 〈n |n− 2〉+(n+1) 〈n |n〉+n 〈n |n〉+
((((

(((
((((

(((È
(n+ 1)(n+ 2) 〈n |n+ 2〉)

=
1

2
(2n+ 1) = n+

1

2
;

〈Pξ〉 :

〈Pξ〉 =
i√
2

(〈n| a† |n〉 − 〈n| a |n〉)

=
i√
2

(((((
((((

((√
n+ 1 〈n |n+ 1〉 −(((((

(((√
n 〈n |n− 1〉) = 0;

¬
P 2
ξ

¶
: ¬

P 2
ξ

¶
= −1

2
(〈n| (a†)2 |n〉 − 〈n| a†a |n〉 − 〈n| aa† |n〉+ 〈n| a2 |n〉)

= −1

2
(
√
n+ 1 〈n| a† |n+ 1〉−

√
n 〈n| a† |n− 1〉−

√
n+ 1 〈n| a |n+ 1〉+

√
n 〈n| a |n− 1〉)

= −1

2
(
((((

((((
((((

((È
(n+ 1)(n+ 2) 〈n |n+ 2〉−n 〈n |n〉−(n+1) 〈n |n〉+(((((

((((
((È

n(n− 1) 〈n |n− 2〉)

= −1

2
(−2n− 1) = n+

1

2
.
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Plugging all of this in where necessary we have

∆ξ∆Pξ =
q

(〈ξ2〉 − 〈ξ〉2)(
¬
P 2
ξ

¶
− 〈Pξ〉2) =

Ê��
n+

1

2

�
− [0]2

���
n+

1

2

�
− [0]2

�

=

s�
n+

1

2

�2

= n+
1

2
.

It should be noted that, although the calculations given above will not have the
same form in the cases n = 0 or n = 1 (since the undefined ”states” |−1〉 and |−2〉
may appear), the same result is produced, as these terms simply disappear earlier
in light of (2.61), its conjugate expression, and (2.59). Additionally, note that by
rewriting the definitions (see (2.53)) of ξ and Pξ as

X =

Ê
~
mω

ξ and P =
√
mω~ Pξ,

we have that

∆X∆P =

� ~
��m�ω

∆ξ

�
(��m�ω~∆Pξ) = ~2∆ξ∆Pξ = ~2

�
n+

1

2

�
,

and, in particular, the ground state uncertainty is

∆X∆P =
~2

2
.

So, the quantum harmonic oscillator actually achieves the minimum uncertainty
allowed by the Heisenberg uncertainty principle.

Ex. 2 Show that

〈0| eikX |0〉 = exp

�
−k

2

2
〈0|X2 |0〉

�
,

where |0〉 is the ground state of the one-dimensional harmonic oscillator, and X is
the position operator.

Proof. We begin by defining a new quantity

µ = −ik
Ê

~
2mω

.

Then, by (2.53) and (2.56),

µ(a† + a) = µ(2 Re(a)) = µ
�

2

r
mω

2~
X
�

2
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= 2

 
−ik

Ê
~

2mω

!�r
mω

2~
X
�

= �2

�
−ik

s
��m��~�ω
�4��m�ω��~

X

�
= −ikX,

so we have
〈0| eikX |0〉 = 〈0| eµa†+µa |0〉 .

Then, by using (7) from Lemma 1 of my solutions to Problem Set 3, we have

= 〈0| eµa†eµa exp
�
−1

2
[µa†, µa]

�
|0〉 = e〈0|µa

†|0〉e〈0|µa|0〉 exp

�
−µ

2

2
〈0| [a†, a] |0〉

�

Next, notice that (2.61) implies that the exponents in the first two terms are zero,
so their exponentials are just 1, and these terms disappear. Furthermore, using the
anticommutativity of [·, ·] on (2.59), we have that [a†, a] = −I. Putting all of this
into the above, we arrive at

〈0| eikX |0〉 = exp

�
1

2

"
−ik

Ê
~

2mω

#2
〈0| I |0〉

�
= exp

�
− k2~

4mω
〈0| I |0〉

�

From here we need to examine the desired matrix element 〈0|X2 |0〉. Combining
(2.53) and (2.57) we have

X =

Ê
~

2mω
(a+ a†) ⇒ X2 =

~
2mω

(a+ a†)2 =
~

2mω
(a2 + aa† + a†a+ (a†)2);

thus, using (2.61) again, as well as (2.59) and the linearity of the operator above,
we have

〈0|X2 |0〉 =
~

2mω
(���

��〈0| a2 |0〉+ 〈0| aa† |0〉+���
���〈0| a†a |0〉+���

���〈0| (a†)2 |0〉)

=
~

2mω
〈0| aa† |0〉 =

~
2mω

(〈0| I |0〉 −����
��〈0| a†a |0〉) =

~
2mω

〈0| I |0〉 .

Substituting this into the expression we derived for the matrix element in question,
we have

〈0| eikX |0〉 = exp

�
−k

2

2
· ~

2mω
〈0| I |0〉

�
= exp

�
−k

2

2
〈0|X2 |0〉

�
.

Ex. 3 The Hermite Polynomials Hn(x) may also be defined by the generating function

f(h, x) = e2hx−h
2

=
X
n

1

n!
Hn(x)hn.
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Show that the above definition of Hn(x) is consistent with

Hn(x) = (−1)nex
2

�
d

dx

�n
e−x

2

.

Proof. Fix x and suppose that we have

e2hx−h
2

=
X
n

1

n!
Hn(x)hn.

Now, consider the Taylor series about 0 for the left-hand side:

e2hx−h
2

=
∞X
n=0

hn

n!

 
dn

dhn
e2hx−h

2

�����
h=0

!

=
∞X
n=0

hn

n!

 
ex

2

e−x
2 dn

dhn
e2hx−h

2

�����
h=0

!

=
∞X
n=0

hn

n!
ex

2

 
dn

dhn
e−x

2+2hx−h2
�����
h=0

!

=
∞X
n=0

hn

n!
ex

2

 
dn

dhn
e−(x−h)

2

�����
h=0

!

=
∞X
n=0

hn

n!
ex

2

 
n!

2πi

Z
γ

e−(x−h)
2

hn+1
dh

!

(by Cauchy’s Integral Formula, where γ is a simple closed curve about the origin)

=
∞X
n=0

hn

n!
ex

2

 
n!

2πi

Z
γ′

e−z
2

(−(z − x))n+1
(−dz)

!

(where we have made the change of variable z = x − h and γ′ is a simple closed
curve about h)

=
∞X
n=0

hn

n!
(−1)nex

2

 
n!

2πi

Z
γ′

e−h
2

(h− x)n+1
dh

!

(where we have renamed the dummy variable z by h)

=
∞X
n=0

hn

n!
(−1)nex

2

 
dn

dhn
e−h

2

�����
h=x

!
,
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where we have used the Cauchy Integral Formula once again. So, we now have
two Taylor series representations about 0 for f(h, x); thus, by the uniqueness of
Taylor series, we must have

Hn(x) = (−1)nex
2

�
d

dx

�n
e−x

2

,

as desired.
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