
Problem Set 4 (Due 10/19/2011) Phys 5041, Jason Payne

Ex. 1 Show that the delta function δ(x) can be expressed as

(a)

δ(x) =
1

π
lim
N→∞

sinNx

x
;

(b)

δ(x) =
1

2

d2

dx2
|x|.

Proof. (a) There are many ways to prove this result- one can do it rather directly
using the Riemann-Lebesgue lemma, or a little more indirectly in the context
of distribution theory by showing the sequence of functions present in the
limit are an approximation to the identity. We, however, will prove it using
machinery more naturally occurring within quantum mechanics- the theory
of the Fourier transform. To do this we will require the power of the Fourier
Inversion Theorem, given below without proof. The interested reader can
find a proof in any Fourier analysis text, or any modern treatment of real
analysis (or, to put it within the correct context, a book on distribution theory
to see the suitable generalization to tempered distributions, cf [1], page 95).

Theorem. Let φ ∈ S (Rn) (i.e. φ is a smooth function on Rn which is rapidly
decreasing). If the Fourier transform of φ is defined as

eφ(ξ) = Z
Rn
φ(x)e−iξ·xdx,

then
φ(x) = (2π)−n

Z
Rn

eφ(ξ)eiξ·xdξ.
Before proving the claim, we will consider the Fourier transform of δ(x) and
what the above theorem then implies. We have

eδ(ξ) = Z
R
δ(x)e−iξxdx = e−iξ(0) = 1.

Thus, by the Fourier Inversion Theorem

δ(x) = (2π)−1
Z
R

eδ(ξ)eiξxdξ = 1

2π

Z
R
eiξxdξ.

But we can rewrite this improper integral as a limit:

δ(x) =
1

2π
lim
N→∞

Z N

−N
eiξxdξ =

1

2π
lim
N→∞

eiξx

ix

�����
N

−N
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=
1

2π
lim
N→∞

eiNx − e−iNx

ix
=

1

�2π
lim
N→∞

�2 sin(Nx)

x
;

hence
δ(x) =

1

π
lim
N→∞

sinNx

x
.

(b) This follows from a couple of fairly simple distributional calculations. First,
we define the sign function, sgn(x):

sgn(x) =

8><>:
x, if x > 0
0, if x = 0
−x, if x < 0

.

(Note: in a slight abuse of notation, we will also denote the distribution asso-
ciated with sgn(x) by the same symbol when no confusion will arise.) The first
step is to verify that, as distributions on R (although, in light of the probable
unfamiliarity of the reader with distribution theory, we will not make use of
the definition of the derivative of a distribution, and simply do the calculation

directly), we have
d

dx
|x| = sgn(x). Indeed, given φ ∈ C∞c (R)®

d

dx
|x|, φ

¸
=
Z ∞
−∞

d

dx
|x|φ(x)dx =���

���|x|φ(x)|∞−∞ −
Z ∞
−∞
|x|φ′(x)dx

= −
�
−
Z 0

−∞
xφ′(x)dx+

Z ∞
0

xφ′(x)dx
�
=
Z 0

−∞
xφ′(x)dx−

Z ∞
0

xφ′(x)dx

=
�
���

���xφ(x)|0−∞ −
Z 0

−∞
φ(x)dx

�
−
�
���

��xφ(x)|∞0 −
Z ∞
0

φ(x)dx
�

=
Z 0

−∞
(−1)φ(x)dx+

Z ∞
0

(1)φ(x)dx = 〈sgn(x), φ〉,

where the boundary terms all vanish since φ has compact support; hence, they
are equal as distributions. Taking this computation one more step gives us
what we want (where we will use the definition of distributional derivatives
for the sake of brevity):®

d2

dx2
|x|, φ

¸
= −

®
d

dx
|x|, φ′

¸
= −〈sgn(x), φ′〉

= −
�Z 0

−∞
(−1)φ′(x)dx+

Z ∞
0

(1)φ′(x)dx
�
= (φ(x)|0−∞) + (−φ(x)|∞0 )

= (φ(0)−
���

���lim
t→−∞

φ(t)) + (−����
�lim

t→∞
φ(t)− (−φ(0))) = 2φ(0) = 2〈δ, φ〉,

which (after dividing by 2) establishes the claim (distributionally).
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Ex. 2 Show that

〈x|P2 |x′〉 =
�~
i

�2

δ′′(x− x′).

Generalize this in the following way

〈x|F (P) |x′〉 = F

�~
i

d

dx

�
δ(x− x′).

Proof. For the first claim we have that

〈x|P2 |x′〉 =
Z
R
dx′′ 〈x|P |x′′〉 〈x′′|P |x′〉

=
Z
R
dx′′

��~
i

�
δ′(x− x′′)

���~
i

�
δ′(x′′ − x′)

�

=

�~
i

�2 Z
R
dx′′δ′(x− x′′)δ′(x′′ − x′).

Allowing ourselves to be a little careless, and treating δ′ and δ′ like functions we
let

⇒
u = δ′(x′′ − x) dv = δ′(x− x′′)dx′′

du = δ′′(x′′ − x)dx′′ v = −δ(x− x′′)
and perform integration by parts to obtain

〈x|P2 |x′〉 =
�~
i

�2 �
−
((((

((((
(((

δ(x− x′′)δ′(x′′ − x′)|∞−∞ −
Z
R
dx′′(−δ′′(x′′ − x′))δ(x− x′′)

�

=

�~
i

�2

δ′′(x− x′),

where the boundary terms disappeared since both δ and δ′ are 0 away from x <
∞ and x′ < ∞, repsectively. We can now generalize this to any power of P by
induction in the following way:

〈x|Pn |x′〉 =
�~
i

�n
δ(n)(x− x′),

where δ(n) is the nth distributional derivative of the δ function. The argument is
essentially identical to that given above in the case n = 2. Suppose that the above
relation holds for n ≤ k and consider when n = k + 1:

〈x|Pk+1 |x′〉 =
Z
R
dx′′ 〈x|P |x′′〉 〈x′′|Pk |x′〉
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=
Z
R
dx′′

��~
i

�
δ′(x− x′′)

� �~
i

�k
δ(k)(x′′ − x′)

!

=

�~
i

�k+1 Z
R
dx′′δ′(x− x′′)δ(k)(x′′ − x′).

Again treating δ′ and δ(k) like functions we let

⇒
u = δ(k)(x′′ − x) dv = δ′(x− x′′)dx′′

du = δ(k+1)(x′′ − x)dx′′ v = δ(x− x′′)

and perform integration by parts to obtain

〈x|Pk+1 |x′〉 =
�~
i

�k+1 �
−
(((

((((
(((

((
δ(x− x′′)δ(k)(x′′ − x′)|∞−∞ −

Z
R
dx′′(−δ(k+1)(x′′ − x′))δ(x− x′′)

�

=

�~
i

�k+1

δ(k+1)(x− x′),

which establishes the claim by induction on n. Now, given a (sufficiently nice)
function F , let the Taylor series about 0 for F be given by

F (X) = a0 + a1X + a2X
2 + · · · =

∞X
n=0

anX
n.

Then we have

〈x|F (P) |x′〉 =
∞X
n=0

an 〈x|Pn |x′〉 =
∞X
n=0

an

�~
i

�n
δ(n)(x− x′)

=
∞X
n=0

an

�~
i

�n � d

dx

�n
δ(x− x′) =

 ∞X
n=0

an

�~
i

d

dx

�n!
δ(x− x′) = F

�~
i

d

dx

�
δ(x− x′),

as claimed.

Ex. 3 Consider a quantum system with state |ψ〉 that is translated by a distance ξ by the
unitary operator U(P, ξ) = exp(−iξP/~), i.e.

|ψ′〉 = U(P, ξ) = e−
i
~ ξP |ψ〉 .

Find the q-representation of |ψ′〉, which is the wave function ψ′(x) = 〈x |ψ′〉 =
〈x|U(P, ξ) |ψ〉, explicitly and interpret the result.
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Solution.

We have that
〈x|U(P; ξ) |ψ〉 =

Z ∞
−∞

dx′ 〈x|U(P; ξ) |x′〉 〈x′ |ψ〉

=
Z ∞
−∞

dx′ 〈x|
�

I− i

~
ξP
�
|x′〉 〈x′ |ψ〉 =

Z ∞
−∞

dx′ 〈x| I |x′〉ψ(x′)− i
~
ξ
Z ∞
−∞

dx′ 〈x|P |x′〉ψ(x′)

=
Z ∞
−∞

dx′δ(x− x′)ψ(x′)− �i
��~
ξ
Z ∞
−∞

dx′
��~
�i
δ′(x− x′)ψ(x′)

= ψ(x) + ξψ′(x).
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