
Problem Set 3 (Due 10/12/2011) Phys 5041, Jason Payne

Ex. 1 Prove that if A and B that both commute with their commutator, then

eAeB = exp

�
A + B +

[A,B]
2

�
.

To prove this relation we will first require the following properties of commutators
and exponentials of operators.

Lemma 1. If A and B are operators which both commute with their commutator, n ≥ 2,
and λ ∈ C, then

(1)
[A,Bn] = nBn−1[A,B];

(2)
[A, eλB] = λ[A,B]eλB;

(3)
eλA[A,B] = [A,B]eλA and eλB[A,B] = [A,B]eλB;

(4)
e−λBeλB = I

(5)
e−λBAeλB = A + λ[A,B];

(6)

exp

�
1

2

�
A + B,

[A,B]
2

��
= I;

(7)

eA+B = eAeB exp

�
− [A,B]

2

�
.

Proof. (of Lemma 1)

(1) We will proceed by induction. To obtain this relation in the case when n = 2,
consider the fact that B commutes with the commutator of A and B:

B[A,B] = [A,B]B

⇔ B(AB− BA) = (AB− BA)B

⇔ BAB− B2A = AB2 − BAB

⇔ 2BAB = AB2 + B2A = {A,B},
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where {·, ·} denotes the anti-commutator. But this gives us that

[A,B2] = {A,B} − 2B2A = 2BAB− 2B2A = 2B(AB− BA) = 2B[A,B],

as desired. Now, suppose that this relation is true for n ≤ k and consider
the case when n = k + 1- the argument is starkly similar to the n = 2 case.
First, we note that upon repeated application of the fact that B commutes with
[A,B], Bk also commutes with [A,B]. Thus, we have that

Bk[A,B] = [A,B]Bk

⇔ Bk(AB− BA) = (AB− BA)Bk

⇔ BkAB− Bk+1A = ABk+1 − BABk

⇔ BkAB + BABk = ABk+1 + Bk+1A = {A,Bk+1}.

Just as was the case when n = 2, from here we can do a little manipulation to
get:

[A,Bk+1] = {A,Bk+1} − 2Bk+1A = BkAB + BABk − 2Bk+1A

= B(Bk−1AB + ABk − 2BkA) = B(Bk−1AB + ABk − BkA− BkA)

= B(Bk−1AB− BkA + ABk − BkA) = B(Bk−1(AB− BA) + [A,Bk])

B(Bk−1[A,B] + kBk−1[A,B]) = (k + 1)Bk[A,B],

as desired. Thus, by induction, we have established the result for n ≥ 2. (It is
also vacuously true when n = 1; however that case is not very interesting.)

(2) This follows from the definition of the exponential of an operator, as well as
an application of (1). Indeed

[A, eλB] = AeλB − eλBA

= A
�

I + λB +
λ2

2!
B2 +

λ3

3!
B3 + · · ·

�
−
�

I + λB +
λ2

2!
B2 +

λ3

3!
B3 + · · ·

�
A

�
A + λAB +

λ2

2!
AB2 +

λ3

3!
AB3 + · · ·

�
−
�

A + λBA +
λ2

2!
B2A +

λ3

3!
B3A + · · ·

�
.

By collecting the terms in powers of λ we have

[A, eλB] =������
λ0(A−A) + λ(AB− BA) +

λ2

2!
(AB2 − B2A) +

λ3

3!
(AB3 − B3A) + · · ·

= λ[A,B] +
λ2

2!
[A,B2] +

λ3

3!
[A,B3] + · · ·

2
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Notice that the type of terms showing up are precisely what we considered in
(1). Thus, we have

[A, eλB] = λ[A,B] +
λ2

2!
(2B[A,B]) +

λ3

3!
(3B2[A,B]) + · · ·

λ[A,B]
�

I + λB +
λ2

2!
B2 + · · ·

�
= λ[A,B]eλB.

(3) This follows from a simple calculation using the definition of the exponential
of an operator.

eλA[A,B] =
�

I + λA +
λ2

2!
A2 + · · ·

�
[A,B]

= [A,B] + λA[A,B] +
λ2

2!
A2[A,B] + · · · = [A,B] + [A,B]A +

λ2

2!
[A,B]A2 + · · ·

= [A,B]
�

I + λA +
λ2

2!
A2 + · · ·

�
= [A,B]eλA.

The argument for the second portion of the claim is completely analogous.

(4) This follows from a simple application of (1.38):

e−λBeλB = e−λBIeλB = I + λ[A, I] +
λ2

2!
[A, [A, I]] + · · ·

= I + λO +
λ2

2!
[A, [A,O]] + · · · = I.

(5) Note that this is similar to (1.38), but easier to derive from the above 4 prop-
erties. By premultiplying (2) by e−λB we obtain

e−λB[A, eλB] = e−λBλ[A,B]eλB

e−λB(AeλB − eλBA) = λ�����
e−λBeλB[A,B]

e−λBAeλB −�����
e−λBeλBA) = λ[A,B]

⇒ e−λBAeλB = A + λ[A,B],

as desired.
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(6) This follows from a (relatively) simple computation and a few of the proper-
ties of the commutator given in the lecture notes. From (1.36a) followed by
(1.36c) we have that

exp

�
1

2

�
A + B,

[A,B]
2

��
= exp

�
−1

2

�
[A,B]
2

,A + B
��

= exp

�
−1

2

�
[A,B]
2

,A
�
− 1

2

�
[A,B]
2

,B
��

.

Since both A and B commute with their commutator, we also have that
�
[A,B]
2

,A
�
=

�
[A,B]
2

,B
�
= O;

hence
exp

�
1

2

�
A + B,

[A,B]
2

��
= eO = I.

(7) This is really the heart of the argument for this exercise, and the proof is sim-
ilar to that of (1.38). We begin by defining f(λ) = eλAeλB. Then we have
that

f ′(λ) = eλAAeλB + eλAeλBB = eλAeλBe−λBAeλB + eλAeλBB

= eλAeλB(e−λBAeλB + B) = f(λ)(e−λBAeλB + B).

We can then apply (5) to the inside of the parentheses to get

f ′(λ) = f(λ)(A + λ[A,B] + B).

From here we simply need to note that the solution to the above differential
equation with f(0) = 1 is

f(λ) = eλ(A+B) exp

�
λ2

2
[A,B]

�
.

Evaluating at λ = 1 and moving the latter term to the other side gives the
desired result.

Proof. (of Ex. 1) This essentially follows from (7). Indeed, (7) implies that

exp

�
(A + B) +

[A,B]
2

�
= eA+B exp

�
[A,B]
2

�
exp

�
−1

2

�
A + B,

[A,B]
2

��
;

4



Problem Set 3 (Due 10/12/2011) Phys 5041, Jason Payne

however it follows from (6) that the latter term is I. Hence, applying (7) to the first
term yields

exp

�
(A + B) +

[A,B]
2

�
= eAeB exp

�
− [A,B]

2

�
exp

�
[A,B]
2

�
.

Finally, (4) tells us that the last two terms cancel, and we are left with

exp

�
(A + B) +

[A,B]
2

�
= eAeB,

as desired.

Ex. 2 If observables A1 and A2 are not compatible, but their corresponding operators
commute with the Hamiltonian operator H, i.e.

[A1,H] = [A2,H] = 0,

show that the energy eigenstates are, in general, degenerate.

Proof. Since [A1,H] = [A2,H] = 0, Proposition 7 tells us that there exist complete
sets {φr} and {ψs} so that

A1φr = arφr , A2ψs = a′sψs
Hφr = Erφr , Hψs = E ′sψs

Moreover, the completeness of {ψs} implies that, for each j, there exist constants
Cj,s so that

φj =
X
s

Cj,sψs.

Next, we will denote by Prk(·) the projection operator along ψk, so that, in particu-
lar,

Prk(φj) = Cj,kψk.

Note that the {Prk(φj)}k also constitutes a complete set of energy eigenstates:

HPrk(φj) = H(Cj,kψk) = E ′k(Cj,kψk) = E ′kPrk(φj).

Completeness follows immediately from the definition of Prk(·) and the complete-
ness of {ψs}. Finally, we proceed by contradiction. Suppose that all of the energy
eigenstates of H are non-degenerate, then {Prk(φj)} are pairwise orthogonal (by
Proposition 2), and hence linearly independent. But this means {Prk(φj)} is a com-
plete set of linearly independent vectors which are simultaneously eigenvectors
for A1 and A2! Indeed,

A2(Prk(φj)) = A2(Cj,kψk) = Cj,ka
′
kψk = a′k(Prk(φj))
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and, using Proposition 6,

A1(Prk(φj)) = Prk(A1φj) = aj(Prk(φj)).

But this is precisely the definition of compatibility, contradicting the assumption
that A1 and A2 are not compatible; therefore degeneracies must exist in the energy
eigenstates.

Ex. 3 Consider a one-dimensional Hamiltonian

H =
1

2m
P2 + V (Q)

and use the fact that the commutator of Q and [Q,H] is a constant operator, to
show that X

k

(Ek − Es)|Qsk|2 =
~
2m

,

which is referred to as the Thomas-Reiche-Kuhn sum rule, where Qsk = (ψs,Qψk)
and ψs is the eigenstate of H with eigenvalue Es, i.e. Hψs = Esψs.

First we will introduce some notation, and then prove three lemmas. Given a
vector φ ∈ H, where H is a Hilbert space, we can define a linear functional on H,
fφ : H → C (i.e. a fφ ∈ H∗), by

fφ(ψ) = (φ, ψ)

(In standard physics notation, fφ is denoted by 〈φ|). Then, given φ, ξ ∈ H, one can
define the outer product of φ and ξ, Op(φ, ξ), as the operator

(Op(φ, ξ))(ψ) = ξfφ(ψ) = (φ, ψ)ξ.

Lemma 2. (Completeness Relation) Let {φi} be a complete set of orthonormal vectors.
Then X

i

Op(φi, φi) = I.

Proof. (of Lemma 2) We simply check what happens when you evaluate this oper-
ator at an arbitrary vector ψ:

 X
i

Op(φi, φi)
!
(ψ) =

X
i

(Op(φi, φi))(ψ) =
X
i

(φi, ψ)φi = ψ,

where the final equality follows from the fact that {φi} is a complete orthonormal
set. Hence,

P
i Op(φi, φi) ≡ I.
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Lemma 3. The commutator of H and Q, [H,Q], is anti-Hermitian.

Proof. (of Lemma 3) Note that both Q and H are Hermitian. Indeed, using the
properties of the adjoint developed in the previous homework assignment,

[H,Q]† = (HQ−QH)† = (HQ)† − (QH)† = Q†H† −H†Q†

= QH−HQ = −(−QH + HQ) = −[H,Q].

Lemma 4. In the context of this exercise, we have

(ψk, [H,Q]ψs) = (Ek − Es)(ψk,Qψs).

Proof. (of Lemma 4) This follows from a simple calculation, with a little maneu-
vering using the adjoint and the linearity and anti-linearity of the inner product in
the second and first coordinates, respectively:

(ψk, [H,Q]ψs) = (ψk,HQψs)− (ψk,QHψs) = ((HQ)†ψk, ψs)− (ψk,QEsψs)

= (Q†H†ψk, ψs)− Es(ψk,Qψs) = (Hψk,Qψs)− Es(ψk,Qψs)

= (Ekψk,Qψs)− Es(ψk,Qψs) = E∗k(ψk,Qψs)− Es(ψk,Qψs) = (Ek − Es)(ψk,Qψs),

where the final equality is justified by the fact that Ek is an eigenvector of a Her-
mitian operator, and is therefore real.

Proof. (of Ex. 4) Now that we have all of that taken care of, the proof is rather
straight-forward. First, the problem points out that the commutator of Q and
[H,Q] is constant, but we must find which constant. To do this, first consider the
commutator itself:

[H,Q] =
�
1

2m
P2 + V (Q),Q

�
= −

�
Q,

1

2m
P2 + V (Q)

�

= −
�
Q,

1

2m
P2
�
−������

[Q, V (Q)] = − 1

2m
[Q,P2] = −i~

m
P,

where the final equality follows form the following simple consequence of the 3rd

Postulate of Ouantum Mechanics:

[Q, F (P)] = i~
d

dP
F (P).

7
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But this means that

[Q, [H,Q]] = −i~
m
[Q,P] = −i~

m
(i~) =

~2

m
,

where we have, once again, used the third postulate. Finally we can establish the
claim- for simplicity of notation, we will begin using C = [H,Q].

~2

m
=

�
ψk,

~2

m
ψk

�
= (ψk, [Q,C]ψk) = (ψk,QCψk)− (ψk,CQψk).

Then, using Lemma 2, we have

~2

m
= (ψk,Q

X
s

Op(ψs, ψs)Cψk)− (ψk,C
X
s

Op(ψs, ψs)Qψk)

=
X
s

((ψk,Q(Op(ψs, ψs))(Cψk))− (ψk,C(Op(ψs, ψs))(Qψk)))

=
X
s

((ψk,Q(ψs,Cψk)ψs)− (ψk,C(ψs,Qψk)ψs))

=
X
s

((ψk,Qψs)(ψs,C, ψk)− (ψk,Cψs)(ψs,Qψk))

=
X
s

((ψk,Qψs)(Es − Ek)(ψs,Qψk)− (Ek − Es)(ψk,Qψs)(ψs,Qψk))

= 2
X
s

(Es − Ek)(ψk,Qψs)(ψs,Qψk).

Notice, however, that

(ψk,Qψs)(ψs,Qψk) = (ψs,Q†ψk)∗(ψs,Qψk) = (ψs,Qψk)∗(ψs,Qψk) = |(ψs,Qψk)|2.

Putting this into the above, and dividing by 2, we obtain

~2

2m
=
X
s

(Es − Ek)|Qsk|2.

Ex. 4 Let

U(L3, θ) = exp

�
iθ

~
(XPy − Y Px)

�
.

Prove that
UXU−1 = X cos θ − Y sin θ,

and
UYU−1 = X sin θ + Y cos θ.

8
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Proof. First we must determine U−1; however, in light of (4), it is clear that it is

U−1(L3, θ) = exp

�
−iθ

~
(XPy − Y Px)

�
.

Next we will introduce some notation to simplify the expressions that follow. Let

CX ≡ C1
X =

�
iθ

~
(XPy − Y Px), X

�
,

and define inductively

Ck+1
X =

�
iθ

~
(XPy − Y Px), Ck

X

�
.

Then an application of (1.38) yields

U−1XU = exp

�
−iθ

~
(XPy − Y Px)

�
X exp

�
iθ

~
(XPy − Y Px)

�

= X +
1

1!
C1
X +

1

2!
C2
X + · · · = X +

∞X
n=1

1

n!
Cn
X .

Clearly, in order to understand this expression we must first examine the termsCk
X .

We will begin by computing explicitly the first few terms, and then generalizing
from there. To do this, first recall the following expression for the momentum
operator, as well as some commutation relations involving the momentum and
position operators:

Px =
~
i

∂

∂x
, Py =

~
i

∂

∂y

and
[X,Py] = [Y, Px] = 0.

From these we have

C1
X =

�
iθ

~
(XPy − Y Px), X

�
=

�
iθ

~
(XPy − Y Px)X

�
−
�
X
iθ

~
(XPy − Y Px)

�

=
�iθ

��~

�
X

��~
�i

∂

∂y
(X)− Y ��~

�i

∂

∂x
(X)−XX��~

�i

∂

∂y
+XY

��~
�i

∂

∂x

�
.

By computing the partial derivatives, and using the commutation relation listed
above, this becomes:

C1
X = θ(X(0)− Y (1)−X ∂

∂y
(X) +X

∂

∂x
(Y )) = −θY.

9
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Similarly, we have that

C2
X =

�
iθ

~
(XPy − Y Px), C1

X

�
=

�
iθ

~
(XPy − Y Px),−θY

�

=

�
iθ

~
(XPy − Y Px)(−θY )

�
−
�
(−θY )

iθ

~
(XPy − Y Px)

�

=
�iθ2

��~

�
X

��~
�i

∂

∂y
(−Y )− Y ��~

�i

∂

∂x
(−Y ) + Y X

��~
�i

∂

∂y
− Y Y ��~

�i

∂

∂x

�
.

= θ2(X(−1)− Y (0) + Y
∂

∂y
(X)− Y ∂

∂x
(Y )) = −θ2X.

From here we can prove by induction what happens in the general case, which is

C2k
X = (−1)kθ2kX;

C2k+1
X = (−1)k+1θ2k+1Y.

Indeed, if we assume that it is true for k ≤ 2j, and consider the case when k =
2j + 1, then we have

C2j+1
X =

�
iθ

~
(XPy − Y Px), C2j

X

�
=

�
iθ

~
(XPy − Y Px), (−1)jθ2jX

�

=

�
iθ

~
(XPy − Y Px)((−1)jθ2jX)

�
−
�
((−1)jθ2jX)

iθ

~
(XPy − Y Px)

�

= (−1)j �iθ
2j+1

��~

�
X

��~
�i

∂

∂y
(X)− Y ��~

�i

∂

∂x
(X)−XX��~

�i

∂

∂y
+XY

��~
�i

∂

∂x

�
.

= (−1)jθ2j+1(X(0)− Y (1) +X
∂

∂y
(X)−X ∂

∂x
(Y )) = (−1)j+1θ2j+1Y.

Similarly, for k = 2j + 2 = 2(j + 1),

C
2(j+1)
X =

�
iθ

~
(XPy − Y Px), C2j+1

X

�
=

�
iθ

~
(XPy − Y Px), (−1)j+1θ2j+1Y

�

=

�
iθ

~
(XPy − Y Px)((−1)j+1θ2j+1Y )

�
−
�
((−1)j+1θ2j+1Y )

iθ

~
(XPy − Y Px)

�

= (−1)j+1�iθ
2(j+1)

��~

�
X

��~
�i

∂

∂y
(Y )− Y ��~

�i

∂

∂x
(Y )− Y X��~

�i

∂

∂y
+ Y Y

��~
�i

∂

∂x

�
.

= (−1)j+1θ2(j+1)(X(1)− Y (0) + Y
∂

∂y
(X)− Y ∂

∂x
(Y )) = (−1)j+1θ2(j+1)X.

10
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Combining this with the cases where k = 1, 2 proven earlier, by induction the
result is established. Now we will insert this information into the expression we
are interested in:

U−1XU = X +
∞X
n=1

1

n!
Cn
X = X +

∞X
n=1

1

(2n!)
C2n
X +

∞X
n=0

1

(2n+ 1)!
C2n+1
X

= X +X
∞X
n=1

(−1)n

(2n!)
θ2n + Y

∞X
n=0

(−1)n+1

(2n+ 1)!
θ2n+1

= X

 
1 +

∞X
n=1

(−1)n

(2n!)
θ2n
!
− Y

∞X
n=0

(−1)n

(2n+ 1)!
θ2n+1

= X cos θ − Y sin θ,

as desired. In a completely analogous fashion we can define

CY ≡ C1
Y =

�
iθ

~
(XPy − Y Px), Y

�

and
Ck+1
Y =

�
iθ

~
(XPy − Y Px), Ck

Y

�
,

and arrive at the general expressions

C2k
Y = (−1)kθ2kY ;

C2k+1
Y = (−1)kθ2k+1X.

Putting this into the analogous application of (1.38) for U−1YU we have

U−1YU = Y +
∞X
n=1

1

n!
Cn
Y = Y +

∞X
n=1

1

(2n!)
C2n
Y +

∞X
n=0

1

(2n+ 1)!
C2n+1
Y

= Y + Y
∞X
n=1

(−1)n

(2n!)
θ2n +X

∞X
n=0

(−1)n

(2n+ 1)!
θ2n+1

= Y

 
1 +

∞X
n=1

(−1)n

(2n!)
θ2n
!
+X

∞X
n=0

(−1)n

(2n+ 1)!
θ2n+1

= Y cos θ +X sin θ.

11
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Ex. 5 Show that if

U(~L, ~θ) = exp
�
i

~
~θ · ~L

�
,

then U commutes with ~X· ~X , ~Y ·~Y , and ~Z·~Z. [Hint: Show that U(X2+Y 2+Z2)U−1 =
X2 + Y 2 + Z2.]

Proof. This is really similar to the previous exercise. First, recall the following ex-
pression for the angular momentum (cf [1], Chapter 2 for derivation):

~L =
~
i

�
Y
∂

∂z
− Z ∂

∂y
, Z

∂

∂x
−X ∂

∂z
,X

∂

∂y
− Y ∂

∂x

�
;

thus

i

~
~θ · ~L = θ1

�
Y
∂

∂z
− Z ∂

∂y

�
+ θ2

�
Z
∂

∂x
−X ∂

∂z

�
+ θ3

�
X
∂

∂y
− Y ∂

∂x

�

Just like the previous problem we will define

C ≡ C1 =
�
i

~
~θ · ~L,X2 + Y 2 + Z2

�

and
Ck+1 =

�
i

~
~θ · ~L,Ck

�
.

Then we have that

i

~
~θ·~L(X2+Y 2+Z2) = θ1

�
Y
∂

∂z
− Z ∂

∂y

�
+θ2

�
Z
∂

∂x
−X ∂

∂z

�
+θ3

�
X
∂

∂y
− Y ∂

∂x

�
(X2+Y 2+Z2)

= θ1(Y (2Z)− Z(2Y )) + θ2(Z(2X)−X(2Z)) + θ3(X(2Y )− Y (2X)) = ~θ ·~0 = 0.

Just as was the case in the previous exercise, the commutation relations ensure us
that the other terms which appear in the commutator will vanish, i.e.

(X2 + Y 2 + Z2)(
i

~
~θ · ~L) = (X2 + Y 2 + Z2)

�
θ1

�
Y
∂

∂z
− Z ∂

∂y

�
+ θ2

�
Z
∂

∂x
−X ∂

∂z

�

+θ3

�
X
∂

∂y
− Y ∂

∂x

��
= 0.

Therefore,

C ≡ C1 =
�
i

~
~θ · ~L,X2 + Y 2 + Z2

�
= 0.
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Consequently,

Ck+1 =
�
i

~
~θ · ~L,Ck

�
=
�
i

~
~θ · ~L, 0

�
= 0.

Thus, by a quick application of (1.38), much in the spirit of the previous exercise,
we have

U(X2 + Y 2 + Z2)U−1 = exp
�
− i
~
~θ · ~L

�
(X2 + Y 2 + Z2) exp

�
i

~
~θ · ~L

�

= (X2 + Y 2 + Z2) +
∞X
n=1

1

n!
Cn
X = X2 + Y 2 + Z2.

Thus, U commutes with X2 + Y 2 + Z2, and so it also commutes with individual
term simply by the distributivity of operators.
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