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Theoretical Model

Refer to Chin. Phys. B 19 014215 (2010) and Opt. Ezpress 12 2731(2004), pulse
propagation around cavity of KLM laser can be describe by the following equation

Extended Nonlinear Scrodinger (ENLS) equation
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La(z,t) contains gain, group velocity delay (GVD) and spectrum narrowing effect.
On the other hand, ]\7(1(,27 t) collects nonlinear parts such as Self Phase Modulation
(SPM) and fast Saturable Absorption induced by Kerr-lens effect.
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Numerical solution of ENLS equation

ENLS equation is often solved by means of split-step Fourier method.

IfN and L commute, we have

a(z + 8z, t) ~ exp(N6z) exp(Léz)a(z, t).

It means that we can split the whole partial differentialAequation into linear part and
nonlinear part. Firstly, we calculate an(z + §z) = exp(Ldz)a(z,t), and then get the

next step a(z + 0z,t) by a(z + 0z,t) = exp(Ndz)an (z + 6z). Thus we can use
different algorithm to solve the equation for optimization.
Since N in our model includes only constant and f(D) (where D = /8t is differential

operator on t), we may efficiently calculate the a(z + dz,t) = eXp(NJz) in frequency
domain, i.e. D becomes iw for simplification.

a(z,w) = F{a(z,t)},
9a _ . [9(Ep) W2 o 9(Ep) o
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a(z + 6z,w) = exp(f(w)dz)a(z,w).

i = f(w)a,

So that we have ay (z + 0z,t) = F~{exp[f(w)dz] F{a(z,t)}
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erimental Setup of P-GDD ker-lens mo

lelocking

I will compare the simulation results with experiment data in Chin. Phys. B 19
014215 (2010). The output average power is about 500 mW (1.68 nJ per pulse). The

output power spectrum is shown as follows:

Fig. 1. Schematic of the experimental setup. My, Mz,
My, flat

Wavelength/nm

dichroic spherical mirrors (R = 100 mm);
high-reflection mirrors; P1, P2, fused silica prist

for dispersion control

950 mm; OC, 22%-transmission wedged output coupler. at a central wavelength of 800 nm.

equence  Fig. 2. Spectra with different net cavity dispersions in
th an apex-to-apex distance of the vicinity of zero GDD. The GDD values are calculated

Negative GDD regime




The relation between GDD, spectrum width and pulse duration is shown as follows,
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Fig. 4. Intensity autocorrelation traces of the direct Fig. 5. Dependences of bandwidth and pulse duration on
output pulses with different positive GDDs. The inset positive GDD.

shows the autocorrelation trace of the dechirped pulse

(GDD=18 fs?).
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RK4 method

Instead of using a(z + dz,w) = exp(f(w)dz)a(z,w) to calculate the next step field
quantity, we can improve the precision of the numerical solution by 4 order
Runge-Kutta (RK4) methods as follows:

Corollary

% f@) = i@p,
ki = 62f(a(2)), k2 = o6zf(a(2)+ %kl),
ks = 62f(a(2) + %1@), ks = 62f(a(2) 4 k3,

1
a(z + 0z,w) = a(z,w) + 6(161 + 2kg + 2k3 + ka).

When executing nonlinear step calculation, we can promote precision by using RK4
method.
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Structure of simula

The simulation result of each round trip is stored in a 2D array

al(cycle,size(t_index)). The pulse width, total energy and peak intensity are also
recorded and plotted after klm.m is finished.

samoling rate & time scale adjustment

spit_step_fftm
nolinear.m spit_step_fft_ngvd.m
tscale.m

dynamically enlarge the t_step I
-

dynamically enlarge the fftsplit

Interation round trip >1000
P-GDD regime in crystal /

P-GDD || N-GDD [ |

22%

nonlinearrk4.m

4-order Runge-Kutta

algor==

1 round trip

Diagnostic

widthscan.m

. parameter split_step_fft.m nonlinear.m
parameter scan

excute imm instant plotting GDD, gain & loss Self phase
in diff. parameter calculate gain spectrum narrowing Fast Saturable Absorber
and record results | | data saving

initial condition

hm.m
pulse width

a1
plots1.m
= i split_step, ngvd.m pulse_width . .
a0=(round trip.t_array) G A pulse_peak With other script.
al(1.:)=a0 Prism induced negative GDD pulse_energy
20> Gavssian soch, rand)

N-GDD regime

at=(round trip,size(t_array))




Simulation Parameters

quantity  value unit quantity value unit
9o 100 m=T v 30x10~>  (W-m)~!
FEsat 10 nJ q0 5 m—1
B2 58 fs2 /mm Qsat 0.3 MW
dw 270 THz lerystal 7 mm
leavity 1820 mm n 0.22

And the total GDD is between -50 fs? and 80 fs2. B2,prism is calculated as,

total GDD — 2 X Ba2lerystal

2 X (lcavity - lcrystal)

ﬁZ,pm’sm -

Both Simulation steps in P-GDD and N-GDD regime are tunable to get steady state
solutions. frame and cycle in MATLAB code control data dump rate and total round

trips.

n denotes transmission of output coupler. We can convert 7 into I:

? = —la = a(z + z) = exp(—ldz)a(z) = na(z),
z

Iny/1—

02 =2 X lopystal = 14 mm = [ = — 7~ 0.0089 mm~.
14 mm
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Validity of Split-Step Fourier Method

We can simulate only GVD effect and compare the pulse width broaden with
analytical solution to check the validity of Split-Step Fourier method in our algorithm.
Assume that the dispersion-free pulse has Gaussian shape,

t2 5 2t2
a(t) = exp —= = I(t) = a”(t) = exp =)
doa 1D 820z
=——a

= a.

oz 2 2

FWHM of I(t) is 7v/21n 2. If the propagation induce D=GDD, pulse width 7 will be
extended to 7/

2D)2 2D)2
7_/:\/7_2_~_(2):7—\/14.( 4) where D = f26z.

T T
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We use klm_gvd_check.m to modified the algorithm with theoretical solution.
Parameters gain narrowing and gs are temporal chosen as zero for pure GDD
simulation.

Temporal waveform of chirped pulse FWHM of Pulse Intensity evolution
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The absolute error on FWHM of Gaussian pulse is approximately -3.2 fs with
B2 = 10 fs?/mm and round trip length [ = 7 mm.
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Boundary condition - Limit of pulse width

We need boundary conditions lim;—,+ a(z,t) = 0 to avoid divergence and aliasing
on spectrum. In the following case, the extended pulse does not fulfill the boundary
conditions and generates ripples bouncing on both end. Generally, we have to create
an temporal array that is as twice larger as the FWHM of simulated pulse.

Temporal waveform of chirped pulse FWHM of Pulse Intensity evolution
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We also did another testing in GDD simulation. We first added positive GDD to
broaden the pulse, and then we applied the same amount of negative GDD to
compress the pulse. The calculation error 59.1 — 19.0 = 0.1 fs dose not exceed the
resolution of temporal array (0.1 fs).

350
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simulation result

Generally the simulation will stop after 2000 round trips (10 steps in P-GDD regime
and 2 steps in N-GDD regime per round trip). Here is an example for GDD=13 fs?
simulation:

Commad widow Instant plotting

Pulse Shape evolution
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Simulated Pulse duration and Power Spectrum

The simulation in Chin. Phys. B 19 014215 (2010) chose GDD=18, 27, 47 fs2. 1 did
the simulation with the same parameters. Red line indicates the theoretical sech?
shape function with the simulated FWHM of pulse intensity.
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total GDD=18 fs2

Pulse Shape Evolution
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total GDD=27 fs2.

Ise Shape Evoluti
pulse Shape “vouton FWHM of Pulse Intensity
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total GDD=47 fs2.

pulse Shape Evolution
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Pulse energy is not sensitive with GDD.
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